{"title":"Tunable green-blue luminescence of Dy2O3 doped borosilicate glasses for optoelectronic devices","authors":"Jaspreet Kaur , Santosh Kumar , Isha Mudahar , K. Singh","doi":"10.1016/j.molstruc.2024.140574","DOIUrl":null,"url":null,"abstract":"<div><div>The optical-structural correlated properties of the <span><math><mn>40</mn><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>40</mn><mi>S</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>10</mn><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>−</mo><mo>(</mo><mn>10</mn><mo>−</mo><mi>x</mi><mo>)</mo><mi>F</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>x</mi><mi>D</mi><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> system, where 2, 4, and 6 mol%, were studied. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) confirmed the glassy and amorphous nature of the samples. Adding <span><math><mi>D</mi><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> promoted the formation of bridging oxygens (upto 4 mol%) by converting <span><math><mi>B</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> into <span><math><mi>B</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> units, however, above 4 mol% <span><math><mi>D</mi><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> act as a modifier. The optical band gap increased from 3.70 to 4.01 eV, while the refractive index decreased from 2.23 to 2.16. The CIE coordinates indicated that the emission spectra fall within the green-blue region. The as-prepared sample exhibited the highest correlated colour temperature value above 5000 K, suggesting its suitability for cool light-emitting diodes sensitive to human vision. These glasses have potential applications in light-emitting diodes and optoelectronic devices.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140574"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030825","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The optical-structural correlated properties of the system, where 2, 4, and 6 mol%, were studied. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) confirmed the glassy and amorphous nature of the samples. Adding promoted the formation of bridging oxygens (upto 4 mol%) by converting into units, however, above 4 mol% act as a modifier. The optical band gap increased from 3.70 to 4.01 eV, while the refractive index decreased from 2.23 to 2.16. The CIE coordinates indicated that the emission spectra fall within the green-blue region. The as-prepared sample exhibited the highest correlated colour temperature value above 5000 K, suggesting its suitability for cool light-emitting diodes sensitive to human vision. These glasses have potential applications in light-emitting diodes and optoelectronic devices.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.