Multivariate spatiotemporal models with low rank coefficient matrix

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-11-01 DOI:10.1016/j.jeconom.2024.105897
Dan Pu , Kuangnan Fang , Wei Lan , Jihai Yu , Qingzhao Zhang
{"title":"Multivariate spatiotemporal models with low rank coefficient matrix","authors":"Dan Pu ,&nbsp;Kuangnan Fang ,&nbsp;Wei Lan ,&nbsp;Jihai Yu ,&nbsp;Qingzhao Zhang","doi":"10.1016/j.jeconom.2024.105897","DOIUrl":null,"url":null,"abstract":"<div><div>Multivariate spatiotemporal data arise frequently in practical applications, often involving complex dependencies across cross-sectional units, time points and multivariate variables. In the literature, few studies jointly model the dependence in three dimensions. To simultaneously model the cross-sectional, dynamic and cross-variable dependence, we propose a multivariate reduced-rank spatiotemporal model. By imposing the low-rank assumption on the spatial influence matrix, the proposed model achieves substantial dimension reduction and has a nice interpretation, especially for financial data. Due to the innate endogeneity, we propose the quasi-maximum likelihood estimator (QMLE) to estimate the unknown parameters. A ridge-type ratio estimator is also developed to determine the rank of the spatial influence matrix. We establish the asymptotic distribution of the QMLE and the rank selection consistency of the ridge-type ratio estimator. The proposed methodology is further illustrated via extensive simulation studies and two applications to a stock market dataset and an air pollution dataset.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"246 1","pages":"Article 105897"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002483","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate spatiotemporal data arise frequently in practical applications, often involving complex dependencies across cross-sectional units, time points and multivariate variables. In the literature, few studies jointly model the dependence in three dimensions. To simultaneously model the cross-sectional, dynamic and cross-variable dependence, we propose a multivariate reduced-rank spatiotemporal model. By imposing the low-rank assumption on the spatial influence matrix, the proposed model achieves substantial dimension reduction and has a nice interpretation, especially for financial data. Due to the innate endogeneity, we propose the quasi-maximum likelihood estimator (QMLE) to estimate the unknown parameters. A ridge-type ratio estimator is also developed to determine the rank of the spatial influence matrix. We establish the asymptotic distribution of the QMLE and the rank selection consistency of the ridge-type ratio estimator. The proposed methodology is further illustrated via extensive simulation studies and two applications to a stock market dataset and an air pollution dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低秩系数矩阵多变量时空模型
多变量时空数据在实际应用中经常出现,往往涉及横截面单位、时间点和多变量之间的复杂依赖关系。在文献中,很少有研究从三个维度对依赖关系进行联合建模。为了同时模拟横截面、动态和跨变量依赖关系,我们提出了一种多变量降低秩时空模型。通过对空间影响矩阵施加低秩假设,所提出的模型大大降低了维度,并具有很好的解释性,尤其适用于金融数据。由于存在先天的内生性,我们提出了准最大似然估计法(QMLE)来估计未知参数。我们还开发了一种脊型比率估计器来确定空间影响矩阵的秩。我们建立了 QMLE 的渐近分布和脊型比率估计器的秩选择一致性。我们通过大量的模拟研究以及股票市场数据集和空气污染数据集的两个应用,进一步说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1