Md Masum Mia , Md. Faruk Hossain , Mahabur Rahman , Nacer Badi , Ahmad Irfan , Md. Ferdous Rahman
{"title":"Unveiling the impact of Se based HTM on BaZrSe3 perovskites solar cell and improving the theoretical efficiency above 32%","authors":"Md Masum Mia , Md. Faruk Hossain , Mahabur Rahman , Nacer Badi , Ahmad Irfan , Md. Ferdous Rahman","doi":"10.1016/j.mseb.2024.117817","DOIUrl":null,"url":null,"abstract":"<div><div>In light of growing global energy demands and the environmental challenges posed by fossil fuels, this study investigates the efficiency improvement of BaZrSe<sub>3</sub>-based perovskite solar cells (PSCs) through the application of selenium (Se)-based hole transport materials (HTMs). Chalcogenide perovskites, such as BaZrSe<sub>3</sub>, present a viable alternative to conventional photovoltaic materials that are often toxic and scarce. Using SCAPS-1D simulations, we modeled and analyzed the photovoltaic performance of PSCs incorporating different Se-based HTMs, including GeSe, MoSe<sub>2</sub>, Sb<sub>2</sub>Se<sub>3</sub>, and SnSe. The results show that integrating SnSe as the HTM significantly enhances power conversion efficiency (PCE), reaching a theoretical maximum of 32.20%. In contrast, BaZrSe<sub>3</sub>-based PSCs without HTMs (FTO/CdS/BaZrSe<sub>3</sub>/Au) achieved a PCE of 23.63%. The performance boost is attributed to better band alignment, improved carrier transport, and reduced recombination losses enabled by the SnSe layer. This study underscores the potential of Se-based HTMs in advancing BaZrSe<sub>3</sub>-based PSCs, paving the way for sustainable and highly efficient photovoltaic technologies.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117817"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006469","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In light of growing global energy demands and the environmental challenges posed by fossil fuels, this study investigates the efficiency improvement of BaZrSe3-based perovskite solar cells (PSCs) through the application of selenium (Se)-based hole transport materials (HTMs). Chalcogenide perovskites, such as BaZrSe3, present a viable alternative to conventional photovoltaic materials that are often toxic and scarce. Using SCAPS-1D simulations, we modeled and analyzed the photovoltaic performance of PSCs incorporating different Se-based HTMs, including GeSe, MoSe2, Sb2Se3, and SnSe. The results show that integrating SnSe as the HTM significantly enhances power conversion efficiency (PCE), reaching a theoretical maximum of 32.20%. In contrast, BaZrSe3-based PSCs without HTMs (FTO/CdS/BaZrSe3/Au) achieved a PCE of 23.63%. The performance boost is attributed to better band alignment, improved carrier transport, and reduced recombination losses enabled by the SnSe layer. This study underscores the potential of Se-based HTMs in advancing BaZrSe3-based PSCs, paving the way for sustainable and highly efficient photovoltaic technologies.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.