Unveiling the impact of Se based HTM on BaZrSe3 perovskites solar cell and improving the theoretical efficiency above 32%

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-11-13 DOI:10.1016/j.mseb.2024.117817
Md Masum Mia , Md. Faruk Hossain , Mahabur Rahman , Nacer Badi , Ahmad Irfan , Md. Ferdous Rahman
{"title":"Unveiling the impact of Se based HTM on BaZrSe3 perovskites solar cell and improving the theoretical efficiency above 32%","authors":"Md Masum Mia ,&nbsp;Md. Faruk Hossain ,&nbsp;Mahabur Rahman ,&nbsp;Nacer Badi ,&nbsp;Ahmad Irfan ,&nbsp;Md. Ferdous Rahman","doi":"10.1016/j.mseb.2024.117817","DOIUrl":null,"url":null,"abstract":"<div><div>In light of growing global energy demands and the environmental challenges posed by fossil fuels, this study investigates the efficiency improvement of BaZrSe<sub>3</sub>-based perovskite solar cells (PSCs) through the application of selenium (Se)-based hole transport materials (HTMs). Chalcogenide perovskites, such as BaZrSe<sub>3</sub>, present a viable alternative to conventional photovoltaic materials that are often toxic and scarce. Using SCAPS-1D simulations, we modeled and analyzed the photovoltaic performance of PSCs incorporating different Se-based HTMs, including GeSe, MoSe<sub>2</sub>, Sb<sub>2</sub>Se<sub>3</sub>, and SnSe. The results show that integrating SnSe as the HTM significantly enhances power conversion efficiency (PCE), reaching a theoretical maximum of 32.20%. In contrast, BaZrSe<sub>3</sub>-based PSCs without HTMs (FTO/CdS/BaZrSe<sub>3</sub>/Au) achieved a PCE of 23.63%. The performance boost is attributed to better band alignment, improved carrier transport, and reduced recombination losses enabled by the SnSe layer. This study underscores the potential of Se-based HTMs in advancing BaZrSe<sub>3</sub>-based PSCs, paving the way for sustainable and highly efficient photovoltaic technologies.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117817"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006469","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In light of growing global energy demands and the environmental challenges posed by fossil fuels, this study investigates the efficiency improvement of BaZrSe3-based perovskite solar cells (PSCs) through the application of selenium (Se)-based hole transport materials (HTMs). Chalcogenide perovskites, such as BaZrSe3, present a viable alternative to conventional photovoltaic materials that are often toxic and scarce. Using SCAPS-1D simulations, we modeled and analyzed the photovoltaic performance of PSCs incorporating different Se-based HTMs, including GeSe, MoSe2, Sb2Se3, and SnSe. The results show that integrating SnSe as the HTM significantly enhances power conversion efficiency (PCE), reaching a theoretical maximum of 32.20%. In contrast, BaZrSe3-based PSCs without HTMs (FTO/CdS/BaZrSe3/Au) achieved a PCE of 23.63%. The performance boost is attributed to better band alignment, improved carrier transport, and reduced recombination losses enabled by the SnSe layer. This study underscores the potential of Se-based HTMs in advancing BaZrSe3-based PSCs, paving the way for sustainable and highly efficient photovoltaic technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示硒基 HTM 对 BaZrSe3 包晶太阳能电池的影响并将理论效率提高到 32% 以上
鉴于日益增长的全球能源需求和化石燃料带来的环境挑战,本研究探讨了通过应用基于硒(Se)的空穴传输材料(HTMs)来提高基于 BaZrSe3 的包晶太阳能电池(PSCs)的效率。BaZrSe3等卤化物包晶是传统光伏材料的可行替代品,而传统光伏材料往往有毒且稀缺。利用 SCAPS-1D 模拟,我们对含有不同硒基 HTM(包括 GeSe、MoSe2、Sb2Se3 和 SnSe)的 PSCs 的光伏性能进行了建模和分析。结果表明,集成 SnSe 作为 HTM 能显著提高功率转换效率(PCE),理论最高可达 32.20%。相比之下,不含 HTM 的基于 BaZrSe3 的 PSC(FTO/CdS/BaZrSe3/Au)的 PCE 为 23.63%。性能的提升归功于更好的带排列、载流子传输的改善以及 SnSe 层带来的重组损耗的降低。这项研究强调了硒基 HTM 在推进基于 BaZrSe3 的 PSC 方面的潜力,为可持续的高效光伏技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Biocompatible Mn and Cu dual-doped ZnS nanosheets for enhanced the photocatalytic activity under sunlight irradiation for wastewater treatment and embedded with PVA polymer for reusability Study on the mechanism of photocatalytic activity enhancement of Ag/Ag3PO4/PDI-2 supramolecular Z-scheme heterojunction photocatalyst A comparative study on the lamella effect and properties of atomized iron powder and reduced iron powder in Fe-based soft magnetic composites Effect of temperature and capillary number on wettability and contact angle hysteresis of various materials. Modeling taking into account porosity Synthesis and enhanced electrical properties of Ag-doped α-Fe2O3 nanoparticles in PVA films for nanoelectronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1