{"title":"Enhanced antifouling performance of PDMS/Ti3C2 nanocomposite coatings via Pickering emulsion approach","authors":"Wei Zhang, Shuxue Zhou","doi":"10.1016/j.porgcoat.2024.108918","DOIUrl":null,"url":null,"abstract":"<div><div>MXene has recently attracted a lot of attention due to its unique properties including its antibacterial property. Nevertheless, the antibacterial performance of MXene depends on its distribution at the surface of coatings. In this study, Ti<sub>3</sub>C<sub>2</sub> nanosheets were modified by hexyltrimethoxysilane and further used as Pickering emulsifier to emulsify vinyl (or hydrogen) dimethicone at different proportions. Afterwards, the as-obtained vinyl dimethicone Pickering emulsion, hydrogen dimethicone Pickering emulsion, and Karstedt catalyst emulsion were simply mixed to get waterborne cross-linkable PDMS/Ti<sub>3</sub>C<sub>2</sub> nanocomposite coatings (HTC<img>P) Compared with solvent-based counterpart (HTC<img>S), HTC-P coating has more Ti<sub>3</sub>C<sub>2</sub> distributed at the surface, which favors their resistance to protein adhesion and algal colonization. The anti-algae property to <em>Chlorella</em> of HTC-P coating is nearly 10 times and 4 times higher than that of PDMS coating and HTC-S coating, respectively. The antibacterial performance of HTC-P coating is also quite excellent, of which the antibacterial performance of HTC-P coating containing 4 wt% modified Ti<sub>3</sub>C<sub>2</sub> nanosheets reaches 99 % of antibacterial rate against <em>Escherichia coli</em> and 100 % against <em>Shewanella loihica</em> Meanwhile, the HTC-P coating possesses strong mechanical properties and fouling releasing performance. The mechanism for the distribution of Ti<sub>3</sub>C<sub>2</sub> nanosheets at the surface of HTC-P coating was also discussed.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"198 ","pages":"Article 108918"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024007100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
MXene has recently attracted a lot of attention due to its unique properties including its antibacterial property. Nevertheless, the antibacterial performance of MXene depends on its distribution at the surface of coatings. In this study, Ti3C2 nanosheets were modified by hexyltrimethoxysilane and further used as Pickering emulsifier to emulsify vinyl (or hydrogen) dimethicone at different proportions. Afterwards, the as-obtained vinyl dimethicone Pickering emulsion, hydrogen dimethicone Pickering emulsion, and Karstedt catalyst emulsion were simply mixed to get waterborne cross-linkable PDMS/Ti3C2 nanocomposite coatings (HTCP) Compared with solvent-based counterpart (HTCS), HTC-P coating has more Ti3C2 distributed at the surface, which favors their resistance to protein adhesion and algal colonization. The anti-algae property to Chlorella of HTC-P coating is nearly 10 times and 4 times higher than that of PDMS coating and HTC-S coating, respectively. The antibacterial performance of HTC-P coating is also quite excellent, of which the antibacterial performance of HTC-P coating containing 4 wt% modified Ti3C2 nanosheets reaches 99 % of antibacterial rate against Escherichia coli and 100 % against Shewanella loihica Meanwhile, the HTC-P coating possesses strong mechanical properties and fouling releasing performance. The mechanism for the distribution of Ti3C2 nanosheets at the surface of HTC-P coating was also discussed.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.