A 3D nitrogen-rich heat-resistant supramolecular MOF with superior energetic performances assembled from Zn(II) and 5-aminotetrazole

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Structure Pub Date : 2024-11-02 DOI:10.1016/j.molstruc.2024.140547
Jian-Di Lin , Fa-Kun Zheng
{"title":"A 3D nitrogen-rich heat-resistant supramolecular MOF with superior energetic performances assembled from Zn(II) and 5-aminotetrazole","authors":"Jian-Di Lin ,&nbsp;Fa-Kun Zheng","doi":"10.1016/j.molstruc.2024.140547","DOIUrl":null,"url":null,"abstract":"<div><div>Heat-resistant explosives are pivotal for specialized applications demanding high thermal stability, essential in both civil and military sectors, especially in extreme environments. Our study focuses on the synthesis of a 3D nitrogen-rich supramolecular energetic metal-organic framework (MOF), Zn(ATZ)<sub>2</sub> (<strong>1</strong>), using the 5-aminotetrazole (HATZ) ligand and Zn(II) ion. Structural analysis indicates that compound <strong>1</strong> adopts the orthorhombic <em>CmCm</em> space group and possesses a robust 2D network, characterized by strong π-π packing interactions between 2D layers, offering exceptional thermal stability up to 322 °C with minimal mechanical sensitivity. The standard molar enthalpy of formation (<em>Δ<sub>f</sub>H<sup>o</sup></em>) and heat of detonation (<em>ΔH<sub>det</sub></em>) for compound <strong>1</strong> are calculated to be 7.08 kJ/g and 7.34 kJ/g, respectively. Remarkably, the <em>Δ<sub>f</sub>H<sup>o</sup></em> of compound <strong>1</strong> significantly exceeds those of traditional heat-resistant explosives like RDX (0.32 kJ/g), HNS (0.17 kJ/g), TNT (–0.295 kJ/g), and TATB (–0.54 kJ/g), and is also higher than those of most reported energetic MOF materials. Similarly, its <em>ΔH<sub>det</sub></em> value surpasses those of common explosives such as TNT (4.144 kJ/g), HMX (5.525 kJ/g) and RDX (5.71 kJ/g), as well as the majority of reported energetic MOFs. Compound <strong>1</strong> also demonstrates impressive detonation properties with a velocity (<em>D</em>) of 7.22 km s<sup>-1</sup> and a pressure (<em>P</em>) of 21.95 GPa, outperforming many other energetic MOF materials. These superior energetic characteristics position compound <strong>1</strong> as a strong candidate for heat-resistant explosives, showcasing its potential for future applications in demanding environments.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140547"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030552","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heat-resistant explosives are pivotal for specialized applications demanding high thermal stability, essential in both civil and military sectors, especially in extreme environments. Our study focuses on the synthesis of a 3D nitrogen-rich supramolecular energetic metal-organic framework (MOF), Zn(ATZ)2 (1), using the 5-aminotetrazole (HATZ) ligand and Zn(II) ion. Structural analysis indicates that compound 1 adopts the orthorhombic CmCm space group and possesses a robust 2D network, characterized by strong π-π packing interactions between 2D layers, offering exceptional thermal stability up to 322 °C with minimal mechanical sensitivity. The standard molar enthalpy of formation (ΔfHo) and heat of detonation (ΔHdet) for compound 1 are calculated to be 7.08 kJ/g and 7.34 kJ/g, respectively. Remarkably, the ΔfHo of compound 1 significantly exceeds those of traditional heat-resistant explosives like RDX (0.32 kJ/g), HNS (0.17 kJ/g), TNT (–0.295 kJ/g), and TATB (–0.54 kJ/g), and is also higher than those of most reported energetic MOF materials. Similarly, its ΔHdet value surpasses those of common explosives such as TNT (4.144 kJ/g), HMX (5.525 kJ/g) and RDX (5.71 kJ/g), as well as the majority of reported energetic MOFs. Compound 1 also demonstrates impressive detonation properties with a velocity (D) of 7.22 km s-1 and a pressure (P) of 21.95 GPa, outperforming many other energetic MOF materials. These superior energetic characteristics position compound 1 as a strong candidate for heat-resistant explosives, showcasing its potential for future applications in demanding environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由 Zn(II) 和 5-aminotetrazole 组装而成的三维富氮耐热超分子 MOF 具有优异的能量性能
耐热炸药对于要求高热稳定性的特殊应用至关重要,在民用和军用领域,尤其是在极端环境下,都是必不可少的。我们的研究重点是利用 5-aminotetrazole (HATZ) 配体和 Zn(II) 离子,合成三维富氮超分子高能金属有机框架(MOF)Zn(ATZ)2 (1)。结构分析表明,化合物 1 采用正交 CmCm 空间群,具有坚固的二维网络,二维层之间具有很强的 π-π 填料相互作用,热稳定性极高,温度可达 322 ℃,机械敏感性极低。经计算,化合物 1 的标准摩尔形成焓(ΔfHo)和引爆热(ΔHdet)分别为 7.08 kJ/g 和 7.34 kJ/g。值得注意的是,化合物 1 的ΔfHo 大大超过了 RDX(0.32 kJ/g)、HNS(0.17 kJ/g)、TNT(-0.295 kJ/g)和 TATB(-0.54 kJ/g)等传统耐热炸药,也高于大多数已报道的高能 MOF 材料。同样,其 ΔHdet 值也超过了 TNT(4.144 kJ/g)、HMX(5.525 kJ/g)和 RDX(5.71 kJ/g)等普通炸药以及大多数已报道的高能 MOF 材料。化合物 1 还具有令人印象深刻的引爆特性,其速度 (D) 为 7.22 km s-1,压力 (P) 为 21.95 GPa,优于许多其他高能 MOF 材料。这些优异的高能特性使化合物 1 成为耐热炸药的有力候选材料,展示了其未来在苛刻环境中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
期刊最新文献
The effect of electron-withdrawing groups on the binding properties of bisphenol A to DNA: Insights from multi-spectral, electrochemical, and molecular docking Insight into the effect of terminal aromatic group on the mesomorphic, emissive and stimuli-responsive properties of cyanostyrene-based derivatives with multiple applications Unraveling the noncovalent interactions in a organic crystal using Quantum theory of atoms in molecules Topological characterization, entropy measures and prediction of properties of Iridium cored dendrimer Unveiling quorum sensing mechanisms: Computational docking and dynamics of bacterial receptors and ligands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1