Application of a new porous bimetallic H-bond catalyst in the preparation of biological henna-based pyrazolo[3,4-b]quinolines via a cooperative vinylogous anomeric based oxidation
Milad Mohammadi Rasooll , Hassan Sepehrmansourie , Mohammad Ali Zolfigol , Mojtaba Hosseinifard , Seyedeh Latifeh Hosseini , Yanlong Gu
{"title":"Application of a new porous bimetallic H-bond catalyst in the preparation of biological henna-based pyrazolo[3,4-b]quinolines via a cooperative vinylogous anomeric based oxidation","authors":"Milad Mohammadi Rasooll , Hassan Sepehrmansourie , Mohammad Ali Zolfigol , Mojtaba Hosseinifard , Seyedeh Latifeh Hosseini , Yanlong Gu","doi":"10.1016/j.mcat.2024.114628","DOIUrl":null,"url":null,"abstract":"<div><div>Bimetallic organic frameworks (bimetallic-MOFs) are considered promising catalysts due to their tunable pores, strength, and high catalytic performance. Here, a bimetallic-MOF-based on iron (Fe) and cobalt (Co) metals was designed, synthesized and characterized. Next, the synthesized bimetallic-MOFs were post-modified with phenyl isocyanate to create urea moieties that are susceptible to hydrogen bonding (H-bond) catalytic activities. Various techniques such as SEM, XRD, BET/BJH, FT-IR, TGA/DTA, EDX and elemental-mapping were used to approve the structure of the synthesized catalyst. MIL-88B(Fe<sub>2</sub>/Co)-UR acts as an H-bond catalyst in the multi-component reaction to form pyrazolo[3,4-<em>b</em>]quinolines <em>via</em> appropriate sections with medicinal properties. The features of using MIL-88B(Fe<sub>2</sub>/Co)-UR as an H-bond catalyst are increased efficiency, decreased reaction time and reusability of the catalyst.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114628"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008101","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bimetallic organic frameworks (bimetallic-MOFs) are considered promising catalysts due to their tunable pores, strength, and high catalytic performance. Here, a bimetallic-MOF-based on iron (Fe) and cobalt (Co) metals was designed, synthesized and characterized. Next, the synthesized bimetallic-MOFs were post-modified with phenyl isocyanate to create urea moieties that are susceptible to hydrogen bonding (H-bond) catalytic activities. Various techniques such as SEM, XRD, BET/BJH, FT-IR, TGA/DTA, EDX and elemental-mapping were used to approve the structure of the synthesized catalyst. MIL-88B(Fe2/Co)-UR acts as an H-bond catalyst in the multi-component reaction to form pyrazolo[3,4-b]quinolines via appropriate sections with medicinal properties. The features of using MIL-88B(Fe2/Co)-UR as an H-bond catalyst are increased efficiency, decreased reaction time and reusability of the catalyst.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods