Effect of printing parameters on the mechanical and piezoresistive response of cellular structures manufactured with a conductive polylactic acid nanocomposite through a material extrusion process
Carlos Rubio-González , José de Jesús Ku-Herrera , Jyhwen Wang , Albert Patterson , Jorge A. Soto-Cajiga , Oscar Olvera-Silva
{"title":"Effect of printing parameters on the mechanical and piezoresistive response of cellular structures manufactured with a conductive polylactic acid nanocomposite through a material extrusion process","authors":"Carlos Rubio-González , José de Jesús Ku-Herrera , Jyhwen Wang , Albert Patterson , Jorge A. Soto-Cajiga , Oscar Olvera-Silva","doi":"10.1016/j.jmapro.2024.10.074","DOIUrl":null,"url":null,"abstract":"<div><div>The piezoresistive response of specimens made by electrically conductive polylactic acid (PLA) under monotonic and cyclic flexural loading was experimentally investigated. A material extrusion process was utilized to 3D print the conductive PLA/carbon black nanocomposite samples using three infill patterns and three infill ratios. Then three-point bending tests, and electrical resistance measurements, were simultaneously conducted on beam-type specimens. The results of the electromechanical tests demonstrated that the 3D printed samples show outstanding piezoresistive sensing characteristics with excellent cyclic stability and reproducibility suitable for in-situ damage detection and strain monitoring through their electrical resistance change. Determination of gauge factors of specimens with different infill ratios and patterns exhibited a significant sensitivity even at low infill ratio. The potential of the piezoresistive property of conductive PLA/carbon black nanocomposite was examined by proposing 3D printed sensors for strain monitoring. The results demonstrated that conductive feedstock can be successfully processed by this material extrusion technique to develop advanced 3D printing sensing solutions. The applicability of the piezoresistive property of conductive cellular structures 3D printed with PLA/carbon black feedstock as a suitable technique for structural health monitoring was demonstrated.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 375-391"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524011150","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The piezoresistive response of specimens made by electrically conductive polylactic acid (PLA) under monotonic and cyclic flexural loading was experimentally investigated. A material extrusion process was utilized to 3D print the conductive PLA/carbon black nanocomposite samples using three infill patterns and three infill ratios. Then three-point bending tests, and electrical resistance measurements, were simultaneously conducted on beam-type specimens. The results of the electromechanical tests demonstrated that the 3D printed samples show outstanding piezoresistive sensing characteristics with excellent cyclic stability and reproducibility suitable for in-situ damage detection and strain monitoring through their electrical resistance change. Determination of gauge factors of specimens with different infill ratios and patterns exhibited a significant sensitivity even at low infill ratio. The potential of the piezoresistive property of conductive PLA/carbon black nanocomposite was examined by proposing 3D printed sensors for strain monitoring. The results demonstrated that conductive feedstock can be successfully processed by this material extrusion technique to develop advanced 3D printing sensing solutions. The applicability of the piezoresistive property of conductive cellular structures 3D printed with PLA/carbon black feedstock as a suitable technique for structural health monitoring was demonstrated.
实验研究了由导电聚乳酸(PLA)制成的试样在单调和循环挠曲加载下的压阻响应。利用材料挤压工艺,采用三种填充模式和三种填充比例,三维打印出导电聚乳酸/炭黑纳米复合材料样品。然后在梁型试样上同时进行了三点弯曲试验和电阻测量。机电测试结果表明,3D 打印样品具有出色的压阻传感特性,具有极佳的周期稳定性和可重复性,适合通过其电阻变化进行原位损伤检测和应变监测。对不同填充比和图案的试样进行测量,即使在低填充比的情况下也能显示出显著的灵敏度。通过提出用于应变监测的 3D 打印传感器,研究了导电聚乳酸/炭黑纳米复合材料压阻特性的潜力。结果表明,导电原料可以通过这种材料挤压技术成功加工,从而开发出先进的 3D 打印传感解决方案。用聚乳酸/炭黑原料三维打印的导电蜂窝结构的压阻特性作为结构健康监测的一种合适技术的适用性得到了证明。
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.