Hui Huang , Yanli Wang , Yong Chae Lim , Eric Boettcher , Zhili Feng
{"title":"Mitigation of distortion of Al/steel part under simulated paint baking condition: Experiment and numerical model studies","authors":"Hui Huang , Yanli Wang , Yong Chae Lim , Eric Boettcher , Zhili Feng","doi":"10.1016/j.jmapro.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-material joining of lightweight structures is essential to reduce vehicle weight for more energy savings and less greenhouse gas emission. However, mismatch of thermal expansion coefficient for dissimilar materials during the paint baking process can induce part distortion and joint failure for adhesive bonding. In the present work, a thermomechanical model based on contact mechanics and large deformation theory was developed for dissimilar high-strength Al alloy and steel components to study the distortion mechanism and influential factors of the residual gap. The established model was used to optimize joint conditions, such as pitch distance and part geometry. When a weld pitch is shorter than 100 mm, the maximum gap between Al and steel part can be greatly reduced to 0.1 mm, and the local stress and plastic strain around the joint during the oven heating and cooling cycle are also substantially reduced compared with the long pitch case (900 mm). The numerical modeling results revealed that a comparable bending stiffness ratio between the steel and Al cross sections is critical to the minimization of gap and distortion under paint baking condition. Digital image correlation technique was used to measure the overall part distortion and local strain distribution that were used to validate the model prediction. Weld bonding (adhesive bonding with friction bit joining) process was successfully employed to join Al to steel component without gap opening in adhesive after the paint baking and cooling.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 494-505"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524011319","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-material joining of lightweight structures is essential to reduce vehicle weight for more energy savings and less greenhouse gas emission. However, mismatch of thermal expansion coefficient for dissimilar materials during the paint baking process can induce part distortion and joint failure for adhesive bonding. In the present work, a thermomechanical model based on contact mechanics and large deformation theory was developed for dissimilar high-strength Al alloy and steel components to study the distortion mechanism and influential factors of the residual gap. The established model was used to optimize joint conditions, such as pitch distance and part geometry. When a weld pitch is shorter than 100 mm, the maximum gap between Al and steel part can be greatly reduced to 0.1 mm, and the local stress and plastic strain around the joint during the oven heating and cooling cycle are also substantially reduced compared with the long pitch case (900 mm). The numerical modeling results revealed that a comparable bending stiffness ratio between the steel and Al cross sections is critical to the minimization of gap and distortion under paint baking condition. Digital image correlation technique was used to measure the overall part distortion and local strain distribution that were used to validate the model prediction. Weld bonding (adhesive bonding with friction bit joining) process was successfully employed to join Al to steel component without gap opening in adhesive after the paint baking and cooling.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.