Design, characterization, and bioactivity evaluation of novel symmetrical N,N'-benzene-1,2-diylbis[1-(2-chloroquinolin-3-yl)methanimine] based metal complexes
Hany M. Abd El-Lateef , Mai M. Khalaf , Mohamed Gouda , Tamer Mohamed Abdelghani Ibrahim , Amer A. Amer , Nawaf I Alsenani , Antar A. Abdelhamid , Aly Abdou
{"title":"Design, characterization, and bioactivity evaluation of novel symmetrical N,N'-benzene-1,2-diylbis[1-(2-chloroquinolin-3-yl)methanimine] based metal complexes","authors":"Hany M. Abd El-Lateef , Mai M. Khalaf , Mohamed Gouda , Tamer Mohamed Abdelghani Ibrahim , Amer A. Amer , Nawaf I Alsenani , Antar A. Abdelhamid , Aly Abdou","doi":"10.1016/j.molstruc.2024.140602","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the synthesis and characterization of two novel metal complexes derived from the symmetrical Schiff base N,N'-benzene-1,2-diylbis[1-(2-chloroquinolin-3-yl)methanimine] (OBCQ), coordinated with Nickel(II) (NiOBCQ) and Copper(II) (CuOBCQ). The structural elucidation of these complexes was achieved through a comprehensive suite of analytical techniques, including elemental analysis, UV–visible spectroscopy, mass spectrometry, infrared spectroscopy, magnetic susceptibility, conductivity measurements, and thermal analysis. The data confirm that both NiOBCQ and CuOBCQ adopt octahedral geometries, formulated as [Ni(OBCQ)(H₂O)₂(Cl)₂] and [Cu(OBCQ)(H₂O)₂(Cl)₂], respectively. Density Functional Theory (DFT) calculations were employed to validate the molecular structures and explore the quantum chemical parameters of OBCQ and its metal complexes. Additionally, in vitro assessments of anti-inflammatory and antioxidant activities revealed enhanced bioactivity for the metal complexes compared to the free OBCQ ligand. Molecular docking studies against key proteins (5IKT for Human Cyclooxygenase-2 and 5IJT for Human Peroxiredoxin 2) highlighted strong binding affinities and molecular interactions, suggesting that OBCQ and its metal complexes hold significant promise as novel therapeutic agents with multifaceted biological activities.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140602"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031107","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis and characterization of two novel metal complexes derived from the symmetrical Schiff base N,N'-benzene-1,2-diylbis[1-(2-chloroquinolin-3-yl)methanimine] (OBCQ), coordinated with Nickel(II) (NiOBCQ) and Copper(II) (CuOBCQ). The structural elucidation of these complexes was achieved through a comprehensive suite of analytical techniques, including elemental analysis, UV–visible spectroscopy, mass spectrometry, infrared spectroscopy, magnetic susceptibility, conductivity measurements, and thermal analysis. The data confirm that both NiOBCQ and CuOBCQ adopt octahedral geometries, formulated as [Ni(OBCQ)(H₂O)₂(Cl)₂] and [Cu(OBCQ)(H₂O)₂(Cl)₂], respectively. Density Functional Theory (DFT) calculations were employed to validate the molecular structures and explore the quantum chemical parameters of OBCQ and its metal complexes. Additionally, in vitro assessments of anti-inflammatory and antioxidant activities revealed enhanced bioactivity for the metal complexes compared to the free OBCQ ligand. Molecular docking studies against key proteins (5IKT for Human Cyclooxygenase-2 and 5IJT for Human Peroxiredoxin 2) highlighted strong binding affinities and molecular interactions, suggesting that OBCQ and its metal complexes hold significant promise as novel therapeutic agents with multifaceted biological activities.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.