{"title":"Influence of 2,1,3-pyrazinochalcogenadiazoles structure on their dimerization via chalcogen bonding (chalcogen = S, Se, Te)","authors":"Qiaoyu Wei , Hui Wang , Andrey V. Zibarev","doi":"10.1016/j.comptc.2024.114984","DOIUrl":null,"url":null,"abstract":"<div><div>Chalcogen bonding (<em>ChB</em>) is an σ-hole-driven secondary bonding interaction (SBI). The crystalline 2,1,3-<em>benzo</em>chalcogenadiazoles involved in organic optoelectronics is exemplified by [E···N]<sub>2</sub> supramolecular synthon. For 5,6- R<sub>2</sub> −2,1,3-<em>pyrazino</em>chalcogenadiazoles E-<strong>M</strong> and [E···N]<sub>2</sub>-bonded (E-<strong>M</strong>)<sub>2</sub> (E = S, Se, Te; R/<strong>M</strong> = H/<strong>1</strong>, Me/<strong>2</strong>, CN/<strong>3</strong>), gas-phase and dichloromethane solution calculations are performed. The molecular electrostatic potential suggests that changes in E, R influence σ- and π-holes of E-<strong>M</strong>/(E-<strong>M</strong>)<sub>2</sub>. Distant R acts via long-range electrostatic field effect. <em>ChB</em> strength increases in the order S < Se < Te, and (E-<strong>2</strong>)<sub>2</sub> < (E-<strong>1</strong>)<sub>2</sub> < (E-<strong>3</strong>)<sub>2</sub>. The main driving forces are electrostatic and dispersion interactions. Crystalline S-<strong>1</strong> and Se-<strong>2</strong> have head-to-head dimers. Se-<strong>3</strong> shows head-to-tail chains via Se···N<sub>cyano</sub> <em>ChB</em>. A competition between different <em>ChB</em>, and, between <em>ChB</em> and other SBIs, should be considered in the design and synthesis of new E-<strong>M</strong>/(E-<strong>M</strong>)<sub>2</sub> for fundamentals and applications.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114984"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24005231","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chalcogen bonding (ChB) is an σ-hole-driven secondary bonding interaction (SBI). The crystalline 2,1,3-benzochalcogenadiazoles involved in organic optoelectronics is exemplified by [E···N]2 supramolecular synthon. For 5,6- R2 −2,1,3-pyrazinochalcogenadiazoles E-M and [E···N]2-bonded (E-M)2 (E = S, Se, Te; R/M = H/1, Me/2, CN/3), gas-phase and dichloromethane solution calculations are performed. The molecular electrostatic potential suggests that changes in E, R influence σ- and π-holes of E-M/(E-M)2. Distant R acts via long-range electrostatic field effect. ChB strength increases in the order S < Se < Te, and (E-2)2 < (E-1)2 < (E-3)2. The main driving forces are electrostatic and dispersion interactions. Crystalline S-1 and Se-2 have head-to-head dimers. Se-3 shows head-to-tail chains via Se···NcyanoChB. A competition between different ChB, and, between ChB and other SBIs, should be considered in the design and synthesis of new E-M/(E-M)2 for fundamentals and applications.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.