Xinru Nie , Ruiyi Jing , Yule Yang , Yangxi Yan , Vladimir Laletin , Vladimir Shur , Guan Wang , Li Jin
{"title":"Optimized electrostrain with minimal hysteresis at the MPB in BNT-based ceramics","authors":"Xinru Nie , Ruiyi Jing , Yule Yang , Yangxi Yan , Vladimir Laletin , Vladimir Shur , Guan Wang , Li Jin","doi":"10.1016/j.jeurceramsoc.2024.117073","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-free (Bi<sub>0.5</sub>Na<sub>0.5</sub>)TiO<sub>3</sub> (BNT)-based ceramics play a vital role in transducers and sensors, owing to their pronounced electrostrain response under applied electric fields. This work presents a notable electrostrain response of 0.54 % with minimal electrostrain hysteresis (11 %) in the <em>x</em> = 0.30 composition near the morphotropic phase boundary (MPB) within (1–<em>x</em>)BNT-<em>x</em>(Ba<sub>0.15</sub>Sr<sub>0.55</sub>Ca<sub>0.3</sub>)TiO<sub>3</sub> (<em>x</em> = 0.2–0.4, BNT-<em>x</em>BSCT) ceramics. By exploiting the variation in tolerance factor through titanate doping and localized disorder from A-site multiple ion substitution, we achieved enhanced electrostrain response via the evolution of nonergodic relaxor (NR) and ergodic relaxor (ER) phase boundaries. Notably, the <em>x</em> = 0.30 composition exhibits ultrahigh electrostrain (>0.5 %) with remarkable thermal stability above 70 °C. This stability arises from the combined effects of domain flipping in ER/NR mixed phases and reversible electric field-induced relaxor-to-ferroelectric phase transitions. These results hold significant potential for advancing electrostrain performance and thermal stability in lead-free BNT-based ceramics.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 4","pages":"Article 117073"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924009464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-free (Bi0.5Na0.5)TiO3 (BNT)-based ceramics play a vital role in transducers and sensors, owing to their pronounced electrostrain response under applied electric fields. This work presents a notable electrostrain response of 0.54 % with minimal electrostrain hysteresis (11 %) in the x = 0.30 composition near the morphotropic phase boundary (MPB) within (1–x)BNT-x(Ba0.15Sr0.55Ca0.3)TiO3 (x = 0.2–0.4, BNT-xBSCT) ceramics. By exploiting the variation in tolerance factor through titanate doping and localized disorder from A-site multiple ion substitution, we achieved enhanced electrostrain response via the evolution of nonergodic relaxor (NR) and ergodic relaxor (ER) phase boundaries. Notably, the x = 0.30 composition exhibits ultrahigh electrostrain (>0.5 %) with remarkable thermal stability above 70 °C. This stability arises from the combined effects of domain flipping in ER/NR mixed phases and reversible electric field-induced relaxor-to-ferroelectric phase transitions. These results hold significant potential for advancing electrostrain performance and thermal stability in lead-free BNT-based ceramics.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.