{"title":"Elucidation of complexation mechanism of rosmarinic acid and berberine","authors":"Hiroyuki Tsutsumi, Yoshiyuki Akita, Tomonori Ohata, Rie Nakashima, Hirohito Ikeda","doi":"10.1016/j.molstruc.2024.140601","DOIUrl":null,"url":null,"abstract":"<div><div>Polyphenols are known to form complexes with various organic compounds. This ability can may change the chemical or physical properties of the compounds involved and may even affect their efficacy in the case of drugs. Our research revealed that mixing solutions of the polyphenol rosmarinic acid (RA) and berberine (Ber), a widely used and pharmacologically important isoquinoline alkaloid, resulted in the formation of a precipitate of the RA–Ber complex at a molar ratio of 1:1. This was confirmed using <sup>1</sup>H NMR and Fourier Transform Infrared Spectroscopy. To elucidate the formation mechanism of the precipitate, the behavior of RA and Ber in an aqueous solution was examined using <sup>1</sup>H NMR, indicating the formation of the RA–Ber complex at a molar ratio of 1:1, consistent with the results of precipitation. Additionally, we investigated the steric structure of the RA–Ber complex in an aqueous solution using molecular modeling calculations. These calculations suggested the existence of seven types different steric structures of the RA–Ber complex, primarily stabilized by π–π interactions. Based on these results, we concluded that mixing RA and Ber solutions in an aqueous environment results in the formation of RA–Ber complexes with seven types different steric structures at a molar ratio of 1:1. The precipitate forms because these complexes are less water-soluble than either RA or Ber alone.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140601"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031090","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyphenols are known to form complexes with various organic compounds. This ability can may change the chemical or physical properties of the compounds involved and may even affect their efficacy in the case of drugs. Our research revealed that mixing solutions of the polyphenol rosmarinic acid (RA) and berberine (Ber), a widely used and pharmacologically important isoquinoline alkaloid, resulted in the formation of a precipitate of the RA–Ber complex at a molar ratio of 1:1. This was confirmed using 1H NMR and Fourier Transform Infrared Spectroscopy. To elucidate the formation mechanism of the precipitate, the behavior of RA and Ber in an aqueous solution was examined using 1H NMR, indicating the formation of the RA–Ber complex at a molar ratio of 1:1, consistent with the results of precipitation. Additionally, we investigated the steric structure of the RA–Ber complex in an aqueous solution using molecular modeling calculations. These calculations suggested the existence of seven types different steric structures of the RA–Ber complex, primarily stabilized by π–π interactions. Based on these results, we concluded that mixing RA and Ber solutions in an aqueous environment results in the formation of RA–Ber complexes with seven types different steric structures at a molar ratio of 1:1. The precipitate forms because these complexes are less water-soluble than either RA or Ber alone.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.