Dynamic quantization of event-triggered adaptive sliding mode control for networked control systems under false data injection attack

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-11-12 DOI:10.1016/j.ins.2024.121626
Xinggui Zhao, Bo Meng, Zhen Wang
{"title":"Dynamic quantization of event-triggered adaptive sliding mode control for networked control systems under false data injection attack","authors":"Xinggui Zhao,&nbsp;Bo Meng,&nbsp;Zhen Wang","doi":"10.1016/j.ins.2024.121626","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic quantization of event-triggered (ET) adaptive sliding mode control (SM, SMC) for networked control systems (NCS) under false data injection attack (FDIA) is considered in this article. To begin with, to reduce the network transmission burden, dynamic quantizers are used to quantize the states and the input on the channels from the plant to the ET mechanism and from the controller to the plant, respectively. Secondly, the dynamic ET mechanism employs quantized state error, and the existence of the minimum inter-event time demonstrates that the system does not experience the Zeno phenomenon. Thirdly, this paper uses the adaptive parameter to estimate the unknown upper bound of the attack mode. In addition, the range of values for the adaptive gain of the SMC is derived by combining with the Lyapunov stability theory. On the last, the comparative simulation results of different methods for numerical examples are given to verify the superiority of the method proposed in this paper.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121626"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015408","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic quantization of event-triggered (ET) adaptive sliding mode control (SM, SMC) for networked control systems (NCS) under false data injection attack (FDIA) is considered in this article. To begin with, to reduce the network transmission burden, dynamic quantizers are used to quantize the states and the input on the channels from the plant to the ET mechanism and from the controller to the plant, respectively. Secondly, the dynamic ET mechanism employs quantized state error, and the existence of the minimum inter-event time demonstrates that the system does not experience the Zeno phenomenon. Thirdly, this paper uses the adaptive parameter to estimate the unknown upper bound of the attack mode. In addition, the range of values for the adaptive gain of the SMC is derived by combining with the Lyapunov stability theory. On the last, the comparative simulation results of different methods for numerical examples are given to verify the superiority of the method proposed in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚假数据注入攻击下网络控制系统事件触发自适应滑模控制的动态量化
本文研究了在虚假数据注入攻击(FDIA)下网络控制系统(NCS)的事件触发(ET)自适应滑模控制(SM,SMC)的动态量化问题。首先,为了减少网络传输负担,本文使用动态量化器分别量化从工厂到 ET 机制以及从控制器到工厂的通道上的状态和输入。其次,动态 ET 机制采用量化状态误差,最小事件间时间的存在表明系统不会出现芝诺现象。第三,本文利用自适应参数估计攻击模式的未知上限。此外,本文还结合李雅普诺夫稳定性理论,得出了 SMC 自适应增益的取值范围。最后,本文给出了不同方法的数值实例仿真结果对比,以验证本文所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Community structure testing by counting frequent common neighbor sets Finite-time secure synchronization for stochastic complex networks with delayed coupling under deception attacks: A two-step switching control scheme Adaptive granular data compression and interval granulation for efficient classification Introducing fairness in network visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1