Modeling information propagation for target user groups in online social networks based on guidance and incentive strategies

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-11-08 DOI:10.1016/j.ins.2024.121628
Lei Meng , Guiqiong Xu , Chen Dong , Shoujin Wang
{"title":"Modeling information propagation for target user groups in online social networks based on guidance and incentive strategies","authors":"Lei Meng ,&nbsp;Guiqiong Xu ,&nbsp;Chen Dong ,&nbsp;Shoujin Wang","doi":"10.1016/j.ins.2024.121628","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of online social networks has greatly facilitated the dissemination and sharing of information. Effectively guiding the propagation of information to specific target groups is a significant and challenging research issue, which can be formulated as the <em>target propagation</em> problem. Most existing studies, however, focus on traditional information propagation methods, treating all users in the network as target audiences, which results in low efficiency and high costs. To address this issue, we propose a novel information propagation model that incorporates adaptive guidance and incentive strategies, called the <span><math><mi>S</mi><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><msub><mrow><mi>R</mi></mrow><mrow><mi>g</mi><mi>u</mi></mrow></msub></math></span> model, to simulate the target spreading process in online social networks. Our model is designed to enhance both global communication capabilities and information transmission efficiency by introducing a mutual influence score that quantifies the interaction between target and non-target users. Based on this, the <span><math><mi>S</mi><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><msub><mrow><mi>R</mi></mrow><mrow><mi>g</mi><mi>u</mi></mrow></msub></math></span> model adaptively guides and incentivizes non-target users to disseminate information specifically to target user groups. We conducted several groups of experiments on nine real-world social networks, assessing scenarios with both single and multiple target groups. Experimental results demonstrate that the <span><math><mi>S</mi><mi>I</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><msub><mrow><mi>R</mi></mrow><mrow><mi>g</mi><mi>u</mi></mrow></msub></math></span> model outperforms existing methods in terms of target influence range and the effectiveness of information spreading, thereby offering valuable insights for practical applications.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121628"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015421","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of online social networks has greatly facilitated the dissemination and sharing of information. Effectively guiding the propagation of information to specific target groups is a significant and challenging research issue, which can be formulated as the target propagation problem. Most existing studies, however, focus on traditional information propagation methods, treating all users in the network as target audiences, which results in low efficiency and high costs. To address this issue, we propose a novel information propagation model that incorporates adaptive guidance and incentive strategies, called the SIIinRgu model, to simulate the target spreading process in online social networks. Our model is designed to enhance both global communication capabilities and information transmission efficiency by introducing a mutual influence score that quantifies the interaction between target and non-target users. Based on this, the SIIinRgu model adaptively guides and incentivizes non-target users to disseminate information specifically to target user groups. We conducted several groups of experiments on nine real-world social networks, assessing scenarios with both single and multiple target groups. Experimental results demonstrate that the SIIinRgu model outperforms existing methods in terms of target influence range and the effectiveness of information spreading, thereby offering valuable insights for practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于引导和激励策略的在线社交网络目标用户群信息传播建模
在线社交网络的快速发展极大地促进了信息的传播和共享。如何有效引导信息向特定目标群体传播是一个重要而富有挑战性的研究课题,可将其表述为目标传播问题。然而,现有的大多数研究都集中在传统的信息传播方法上,将网络中的所有用户都视为目标受众,导致效率低、成本高。为解决这一问题,我们提出了一种融合了自适应引导和激励策略的新型信息传播模型,称为 SIIinRgu 模型,用于模拟在线社交网络中的目标传播过程。我们的模型旨在通过引入相互影响分值来量化目标用户和非目标用户之间的互动,从而提高全局传播能力和信息传播效率。在此基础上,SIIinRgu 模型自适应地引导和激励非目标用户专门向目标用户群传播信息。我们在九个真实世界的社交网络上进行了多组实验,评估了单一目标群体和多个目标群体的情景。实验结果表明,SIIinRgu 模型在目标影响范围和信息传播效果方面优于现有方法,从而为实际应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Community structure testing by counting frequent common neighbor sets Finite-time secure synchronization for stochastic complex networks with delayed coupling under deception attacks: A two-step switching control scheme Adaptive granular data compression and interval granulation for efficient classification Introducing fairness in network visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1