{"title":"High-specific capacitance, binder-free composite electrodes prepared from carbon dots embedded in copper oxide-nickel oxide nanowires grown on nickel foam for asymmetric supercapacitors","authors":"Wasinee Pholauyphon , Thanapat Jorn-am , Preeyanuch Supchocksoonthorn , Kulpriya Phetcharee , Natee Sirisit , Jedsada Manyam , Chalathorn Chanthad , Tanagorn Sangtaweesin , Peerasak Paoprasert","doi":"10.1016/j.jelechem.2024.118792","DOIUrl":null,"url":null,"abstract":"<div><div>The binder-free electrodes based on CuO-NiO and sodium polyacrylate-derived carbon dots (CDs) composites were simply prepared on nickel foam in two steps: hydrothermal synthesis and thermal annealing. A specific capacitance as high as 635 F g<sup>−1</sup> (at 5 mV s<sup>−1</sup>) was achieved with the electrodes containing CDs embedded in the CuO-NiO nanowires, compared to only 468 F g<sup>−1</sup> for the CuO-NiO nanowire electrode without CDs, representing a 136 % improvement. To provide mechanistic insights on the supercapacitor performance, electrochemical analysis was carried out, and it was found that synergistic effects from CuO-NiO and CDs gave an optimum contribution of surface/diffusion processes of charge transfer. Asymmetric supercapacitor was also fabricated using activated carbon as a negative electrode and CDs/CuO-NiO@Ni-foam as a positive electrode, giving a 1.5 V, highest energy density of 20.3 Wh kg<sup>−1</sup> at power density of 151.1 W kg<sup>−1</sup>. Due to simplicity and extraordinary performance, the binder-free CDs/CuO-NiO composite electrodes are potential candidates for the mainstream supercapacitors, and the strategy detailed in this work also provides an innovative, practical way for an electrode design for energy storage devices.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118792"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007707","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The binder-free electrodes based on CuO-NiO and sodium polyacrylate-derived carbon dots (CDs) composites were simply prepared on nickel foam in two steps: hydrothermal synthesis and thermal annealing. A specific capacitance as high as 635 F g−1 (at 5 mV s−1) was achieved with the electrodes containing CDs embedded in the CuO-NiO nanowires, compared to only 468 F g−1 for the CuO-NiO nanowire electrode without CDs, representing a 136 % improvement. To provide mechanistic insights on the supercapacitor performance, electrochemical analysis was carried out, and it was found that synergistic effects from CuO-NiO and CDs gave an optimum contribution of surface/diffusion processes of charge transfer. Asymmetric supercapacitor was also fabricated using activated carbon as a negative electrode and CDs/CuO-NiO@Ni-foam as a positive electrode, giving a 1.5 V, highest energy density of 20.3 Wh kg−1 at power density of 151.1 W kg−1. Due to simplicity and extraordinary performance, the binder-free CDs/CuO-NiO composite electrodes are potential candidates for the mainstream supercapacitors, and the strategy detailed in this work also provides an innovative, practical way for an electrode design for energy storage devices.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.