Yuxin Cui , Shunshun Zhao , Xiaowei Zhao , Lili Liu , Shimou Chen
{"title":"An anti-freezing hydrogel electrolyte based on hydroxyethyl urea for dendrite-free Zn ion batteries","authors":"Yuxin Cui , Shunshun Zhao , Xiaowei Zhao , Lili Liu , Shimou Chen","doi":"10.1016/j.jelechem.2024.118797","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries are considered as a promising energy storage resource due to their high security, abundant resources and low price. However, the development of aqueous zinc ion batteries has been severely hindered by compulsive dendrite generation, serious side reactions and poor temperature adaptability. Herein, we used hydroxyethyl urea as a hydrogel electrolyte additive to address above-mentioned challenges. Hydroxyethyl urea can break the hydrogen bonds (HBs) of water and enhancing the freezing-tolerance ability of the electrolyte. Meanwhile, hydroxyethyl urea can prevent the corrosion issue and inhibition of Zn dendrites. Consequently, the Zn//Zn symmetric battery can sustain stable cycling for over 3000 h at 1 mA cm<sup>−2</sup>, and it achieves a high coulombic efficiency of 99.6 %. Even at −40 ℃ the batteries show excellent cycling stability, the Zn//Zn symmetry battery can achieve steadily cycles over 3000 h. The Zn//NVO battery equipped with the altered electrolyte exhibits enhanced capacity retention compared to the one without additives.<!--> <!-->It demonstrates not only excellent cycling stability at room temperature but also maintains commendable functionality down to −40 ℃, validating the method’s efficacy. This work provides a simple strategy for enhancing low temperature performance of zinc ion batteries.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118797"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007756","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc ion batteries are considered as a promising energy storage resource due to their high security, abundant resources and low price. However, the development of aqueous zinc ion batteries has been severely hindered by compulsive dendrite generation, serious side reactions and poor temperature adaptability. Herein, we used hydroxyethyl urea as a hydrogel electrolyte additive to address above-mentioned challenges. Hydroxyethyl urea can break the hydrogen bonds (HBs) of water and enhancing the freezing-tolerance ability of the electrolyte. Meanwhile, hydroxyethyl urea can prevent the corrosion issue and inhibition of Zn dendrites. Consequently, the Zn//Zn symmetric battery can sustain stable cycling for over 3000 h at 1 mA cm−2, and it achieves a high coulombic efficiency of 99.6 %. Even at −40 ℃ the batteries show excellent cycling stability, the Zn//Zn symmetry battery can achieve steadily cycles over 3000 h. The Zn//NVO battery equipped with the altered electrolyte exhibits enhanced capacity retention compared to the one without additives. It demonstrates not only excellent cycling stability at room temperature but also maintains commendable functionality down to −40 ℃, validating the method’s efficacy. This work provides a simple strategy for enhancing low temperature performance of zinc ion batteries.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.