Unveiling the adverse selection problem in China's digital lending market: Evidence from CHFS

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE International Review of Financial Analysis Pub Date : 2024-11-01 DOI:10.1016/j.irfa.2024.103631
Zhihao Zhan , Anqi Zhang , Mingxin Zhang , Mingxin Zhang
{"title":"Unveiling the adverse selection problem in China's digital lending market: Evidence from CHFS","authors":"Zhihao Zhan ,&nbsp;Anqi Zhang ,&nbsp;Mingxin Zhang ,&nbsp;Mingxin Zhang","doi":"10.1016/j.irfa.2024.103631","DOIUrl":null,"url":null,"abstract":"<div><div>Using data from the China Household Finance Survey (CHFS) 2019, we reveals a substantial adverse selection issue within China's Internet Credit Loan (ICL) market. Empirical evidence indicates that households with higher Debt-to-Income Ratios (DIR) are more inclined to apply for Internet Credit Loans (ICLs), with an average DIR of 76.9 %, constituting 20 % of ICL applications. While Internet Credit Loans (ICLs) provide alternative financing options, their high fixed interest rates undermine the potential cost advantages associated with digital technology. Adverse selection is especially pronounced in the case of operational loans. Our findings underscore the urgency for regulatory intervention to address these issues effectively.</div></div>","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"96 ","pages":"Article 103631"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1057521924005635","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using data from the China Household Finance Survey (CHFS) 2019, we reveals a substantial adverse selection issue within China's Internet Credit Loan (ICL) market. Empirical evidence indicates that households with higher Debt-to-Income Ratios (DIR) are more inclined to apply for Internet Credit Loans (ICLs), with an average DIR of 76.9 %, constituting 20 % of ICL applications. While Internet Credit Loans (ICLs) provide alternative financing options, their high fixed interest rates undermine the potential cost advantages associated with digital technology. Adverse selection is especially pronounced in the case of operational loans. Our findings underscore the urgency for regulatory intervention to address these issues effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示中国数字借贷市场的逆向选择问题:来自CHFS的证据
利用 2019 年中国家庭金融调查(CHFS)的数据,我们揭示了中国互联网信用贷款(ICL)市场中存在的大量逆向选择问题。经验证据表明,负债收入比(DIR)较高的家庭更倾向于申请互联网信用贷款(ICL),平均负债收入比为 76.9%,占互联网信用贷款申请的 20%。虽然互联网信用贷款(ICLs)提供了另一种融资选择,但其高额的固定利率削弱了与数字技术相关的潜在成本优势。逆向选择在经营性贷款中尤为明显。我们的调查结果表明,亟需进行监管干预,以有效解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
期刊最新文献
Editorial Board Sovereign momentum currency returns When the tide wanes: A study of post systemic collapse portfolio management Evaluating the sophisticated digital assets and cryptocurrencies capacities of substituting international currencies in inflationary eras Do regional trusts alleviate bond market risks? Evidence from the Chinese municipal corporate bond pricing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1