Million-core scalable 3D anisotropic reverse time migration on the Sugon exascale supercomputer

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-11-05 DOI:10.1016/j.cageo.2024.105754
Sihai Wu , Jiubing Cheng , Jianwei Ma , Tengfei Wang , Xueshan Yong , Yang Ji
{"title":"Million-core scalable 3D anisotropic reverse time migration on the Sugon exascale supercomputer","authors":"Sihai Wu ,&nbsp;Jiubing Cheng ,&nbsp;Jianwei Ma ,&nbsp;Tengfei Wang ,&nbsp;Xueshan Yong ,&nbsp;Yang Ji","doi":"10.1016/j.cageo.2024.105754","DOIUrl":null,"url":null,"abstract":"<div><div>Reverse time migration (RTM) plays a crucial role in high-resolution seismic imaging of the Earth’s interior. However, scaling it across millions of cores in parallel to process large-scale seismic datasets poses significant computational challenges, because the conventional storage solutions are insufficient to deal with the I/O and memory bottlenecks. To address this issue, we present a highly scalable 3D RTM algorithm for vertically transverse isotropic (VTI) media, optimized for the Sugon exascale supercomputer, utilizing over 1,024,000 cores with optimal weak-scaling efficiency. Through cache optimizations tailored for the new deep computing unit (DCU) accelerator architecture, our approach achieves a maximum speedup of 6x compared to conventional methods on a single accelerator. Moreover, based on the lossy compression and boundary-saving techniques, we reduce storage requirements by 266 times, which allows for the effective utilization of million-core computing resources and ensures scalability efficiency when handling large-scale datasets for complex geophysical tasks. Finally, when applied to a industrial dataset, the method demonstrates robust scalability and high efficiency, making it well-suited for large-scale geophysical exploration.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"194 ","pages":"Article 105754"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002371","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse time migration (RTM) plays a crucial role in high-resolution seismic imaging of the Earth’s interior. However, scaling it across millions of cores in parallel to process large-scale seismic datasets poses significant computational challenges, because the conventional storage solutions are insufficient to deal with the I/O and memory bottlenecks. To address this issue, we present a highly scalable 3D RTM algorithm for vertically transverse isotropic (VTI) media, optimized for the Sugon exascale supercomputer, utilizing over 1,024,000 cores with optimal weak-scaling efficiency. Through cache optimizations tailored for the new deep computing unit (DCU) accelerator architecture, our approach achieves a maximum speedup of 6x compared to conventional methods on a single accelerator. Moreover, based on the lossy compression and boundary-saving techniques, we reduce storage requirements by 266 times, which allows for the effective utilization of million-core computing resources and ensures scalability efficiency when handling large-scale datasets for complex geophysical tasks. Finally, when applied to a industrial dataset, the method demonstrates robust scalability and high efficiency, making it well-suited for large-scale geophysical exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在曙光超大规模超级计算机上实现百万核级可扩展三维各向异性反向时间迁移
反演时间迁移(RTM)在地球内部高分辨率地震成像中起着至关重要的作用。然而,由于传统的存储解决方案不足以应对 I/O 和内存瓶颈,因此在数百万个内核上并行扩展以处理大规模地震数据集带来了巨大的计算挑战。为解决这一问题,我们针对垂直横向各向同性(VTI)介质提出了一种高度可扩展的三维 RTM 算法,该算法针对 Sugon 超大规模超级计算机进行了优化,利用超过 1,024,000 个内核实现了最佳弱扩展效率。通过为新的深度计算单元(DCU)加速器架构量身定制的高速缓存优化,我们的方法在单个加速器上实现了比传统方法快 6 倍的最大速度。此外,基于有损压缩和边界节省技术,我们将存储需求降低了 266 倍,从而实现了百万核计算资源的有效利用,并确保了在处理复杂地球物理任务的大规模数据集时的可扩展性效率。最后,在应用于工业数据集时,该方法表现出强大的可扩展性和高效率,非常适合大规模地球物理勘探。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1