Sihai Wu , Jiubing Cheng , Jianwei Ma , Tengfei Wang , Xueshan Yong , Yang Ji
{"title":"Million-core scalable 3D anisotropic reverse time migration on the Sugon exascale supercomputer","authors":"Sihai Wu , Jiubing Cheng , Jianwei Ma , Tengfei Wang , Xueshan Yong , Yang Ji","doi":"10.1016/j.cageo.2024.105754","DOIUrl":null,"url":null,"abstract":"<div><div>Reverse time migration (RTM) plays a crucial role in high-resolution seismic imaging of the Earth’s interior. However, scaling it across millions of cores in parallel to process large-scale seismic datasets poses significant computational challenges, because the conventional storage solutions are insufficient to deal with the I/O and memory bottlenecks. To address this issue, we present a highly scalable 3D RTM algorithm for vertically transverse isotropic (VTI) media, optimized for the Sugon exascale supercomputer, utilizing over 1,024,000 cores with optimal weak-scaling efficiency. Through cache optimizations tailored for the new deep computing unit (DCU) accelerator architecture, our approach achieves a maximum speedup of 6x compared to conventional methods on a single accelerator. Moreover, based on the lossy compression and boundary-saving techniques, we reduce storage requirements by 266 times, which allows for the effective utilization of million-core computing resources and ensures scalability efficiency when handling large-scale datasets for complex geophysical tasks. Finally, when applied to a industrial dataset, the method demonstrates robust scalability and high efficiency, making it well-suited for large-scale geophysical exploration.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"194 ","pages":"Article 105754"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002371","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Reverse time migration (RTM) plays a crucial role in high-resolution seismic imaging of the Earth’s interior. However, scaling it across millions of cores in parallel to process large-scale seismic datasets poses significant computational challenges, because the conventional storage solutions are insufficient to deal with the I/O and memory bottlenecks. To address this issue, we present a highly scalable 3D RTM algorithm for vertically transverse isotropic (VTI) media, optimized for the Sugon exascale supercomputer, utilizing over 1,024,000 cores with optimal weak-scaling efficiency. Through cache optimizations tailored for the new deep computing unit (DCU) accelerator architecture, our approach achieves a maximum speedup of 6x compared to conventional methods on a single accelerator. Moreover, based on the lossy compression and boundary-saving techniques, we reduce storage requirements by 266 times, which allows for the effective utilization of million-core computing resources and ensures scalability efficiency when handling large-scale datasets for complex geophysical tasks. Finally, when applied to a industrial dataset, the method demonstrates robust scalability and high efficiency, making it well-suited for large-scale geophysical exploration.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.