SenticNet and Abstract Meaning Representation driven Attention-Gate semantic framework for aspect sentiment triplet extraction

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-15 DOI:10.1016/j.engappai.2024.109625
Xiaowen Sun, Jiangtao Qi, Zhenfang Zhu, Meng Li, Hongli Pei, Jing Meng
{"title":"SenticNet and Abstract Meaning Representation driven Attention-Gate semantic framework for aspect sentiment triplet extraction","authors":"Xiaowen Sun,&nbsp;Jiangtao Qi,&nbsp;Zhenfang Zhu,&nbsp;Meng Li,&nbsp;Hongli Pei,&nbsp;Jing Meng","doi":"10.1016/j.engappai.2024.109625","DOIUrl":null,"url":null,"abstract":"<div><div>Aspect sentiment triplet extraction aims to analyze aspect-level sentiment in the form of triplets, including extracting aspect-opinion pairs and predicting the sentiment polarities of these pairs. Many recent works rely on syntactic information (e.g. part-of-speech and syntactic dependency relation) to handle this semantic task, which ignores uncommon part-of-speech items and matches semantically unrelated words. To overcome these drawbacks, we propose a SenticNet and Abstract Meaning Representation (AMR) driven Attention-Gate semantic framework (SAAG), which introduces semantic sentiment knowledge SenticNet and semantic structure AMR as semantic information to replace syntactic information. To highlight the affective meanings in words, an affective-driven attention mechanism is designed to emphasizes sentiment intent within word representations. To match semantically related words, the designed AMR-driven gate mechanism balances the word pair expressions under varying semantic contexts. Extensive experiments on two public datasets demonstrate the effectiveness of our approach.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109625"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017834","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect sentiment triplet extraction aims to analyze aspect-level sentiment in the form of triplets, including extracting aspect-opinion pairs and predicting the sentiment polarities of these pairs. Many recent works rely on syntactic information (e.g. part-of-speech and syntactic dependency relation) to handle this semantic task, which ignores uncommon part-of-speech items and matches semantically unrelated words. To overcome these drawbacks, we propose a SenticNet and Abstract Meaning Representation (AMR) driven Attention-Gate semantic framework (SAAG), which introduces semantic sentiment knowledge SenticNet and semantic structure AMR as semantic information to replace syntactic information. To highlight the affective meanings in words, an affective-driven attention mechanism is designed to emphasizes sentiment intent within word representations. To match semantically related words, the designed AMR-driven gate mechanism balances the word pair expressions under varying semantic contexts. Extensive experiments on two public datasets demonstrate the effectiveness of our approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SenticNet 和抽象意义表征驱动的注意门语义框架用于方面情感三元组提取
方面情感三连抽取旨在分析三连形式的方面级情感,包括抽取方面-观点对和预测这些对的情感极性。最近的许多研究都依赖句法信息(如语音部分和句法依赖关系)来处理这一语义任务,这就忽略了不常见的语音部分项,并匹配语义上不相关的词。为了克服这些缺点,我们提出了一种由 SenticNet 和抽象意义表示(AMR)驱动的注意门语义框架(SAAG),它引入了语义情感知识 SenticNet 和语义结构 AMR 作为语义信息来替代句法信息。为了突出词语中的情感含义,设计了情感驱动的注意机制,以强调词语表征中的情感意图。为了匹配语义相关的词语,所设计的 AMR 驱动门机制可在不同语义语境下平衡词对表达。在两个公开数据集上进行的广泛实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Chimney detection and size estimation from high-resolution optical satellite imagery using deep learning models Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding Learning discriminative representations by a Canonical Correlation Analysis-based Siamese Network for offline signature verification Decoding text from electroencephalography signals: A novel Hierarchical Gated Recurrent Unit with Masked Residual Attention Mechanism A novel hybrid data-driven domain generalization approach with dual-perspective feature fusion for intelligent fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1