{"title":"Integration of in-wheel motor sensorless systems and hierarchical direct yaw moment control for distributed drive electric vehicles","authors":"Xiaodong Wang , Maoping Ran , Xinglin Zhou","doi":"10.1016/j.engappai.2024.109600","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring robust and reliable control of distributed vehicles powered by in-wheel motor systems poses a significant challenge due to the harsh operating environments and high costs of such motor systems. Poor motor control, parameter variations, and sensor malfunction under these conditions can compromise the vehicle yaw stability. Integrating permanent magnet synchronous motor (PMSM) sensorless systems with vehicle yaw moment control offers a cost-effective solution for this issue without wheel angular speed sensors while enhancing yaw stability. In this paper, a composite nonlinear feedback sliding mode controller that can enhance the PMSM speed response is proposed. The proposed scheme exhibits a rotor speed overshoot and transient time of only 0.64% and 0.07s, respectively, which are smaller and shorter compared with other methods under motor parameter changes. Subsequently, the key states and tire-road friction coefficients required for vehicle control were estimated using sensorless rotor speeds and unscented Kalman filters, enabling the integration of the PMSM sensorless system with the vehicle yaw moment control. Additionally, a fuzzy adaptive hybrid sliding mode method is presented for yaw moment control enhancement. This method maintained the smallest sideslip angle root mean square error during double lane changes (0.4192 deg) compared with other methods. Analysis results show that different motor controllers and parameter changes significantly affect the vehicle dynamics performance. The proposed integrated scheme is feasible and effectively enhances the yaw moment control via high-performance sensorless PMSM systems.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109600"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017585","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring robust and reliable control of distributed vehicles powered by in-wheel motor systems poses a significant challenge due to the harsh operating environments and high costs of such motor systems. Poor motor control, parameter variations, and sensor malfunction under these conditions can compromise the vehicle yaw stability. Integrating permanent magnet synchronous motor (PMSM) sensorless systems with vehicle yaw moment control offers a cost-effective solution for this issue without wheel angular speed sensors while enhancing yaw stability. In this paper, a composite nonlinear feedback sliding mode controller that can enhance the PMSM speed response is proposed. The proposed scheme exhibits a rotor speed overshoot and transient time of only 0.64% and 0.07s, respectively, which are smaller and shorter compared with other methods under motor parameter changes. Subsequently, the key states and tire-road friction coefficients required for vehicle control were estimated using sensorless rotor speeds and unscented Kalman filters, enabling the integration of the PMSM sensorless system with the vehicle yaw moment control. Additionally, a fuzzy adaptive hybrid sliding mode method is presented for yaw moment control enhancement. This method maintained the smallest sideslip angle root mean square error during double lane changes (0.4192 deg) compared with other methods. Analysis results show that different motor controllers and parameter changes significantly affect the vehicle dynamics performance. The proposed integrated scheme is feasible and effectively enhances the yaw moment control via high-performance sensorless PMSM systems.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.