Analysis of computer communication networks based on evaluation of domination and double domination for interval-valued T-spherical fuzzy graphs and their applications in decision-making problems

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-15 DOI:10.1016/j.engappai.2024.109650
Sami Ullah Khan , Fiaz Hussain , Tapan Senapati , Shoukat Hussain , Zeeshan Ali , Domokos Esztergár-Kiss , Sarbast Moslem
{"title":"Analysis of computer communication networks based on evaluation of domination and double domination for interval-valued T-spherical fuzzy graphs and their applications in decision-making problems","authors":"Sami Ullah Khan ,&nbsp;Fiaz Hussain ,&nbsp;Tapan Senapati ,&nbsp;Shoukat Hussain ,&nbsp;Zeeshan Ali ,&nbsp;Domokos Esztergár-Kiss ,&nbsp;Sarbast Moslem","doi":"10.1016/j.engappai.2024.109650","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces the Interval-Valued T-Spherical Fuzzy Graph (IVTSFG), a novel extension of fuzzy graph theory designed to address imprecision in decision-making processes, network analysis, and Computer Communication Networks (CCNs). Integrating four types of membership degrees-membership, non-membership, abstinence, and hesitancy-the IVTSFG framework significantly enhances the ability to model and analyze complex systems with uncertain data. The study explores the theories of domination and double domination within the context of IVTSFGs, presenting new methods for evaluating network resilience and optimization. Key findings include the development of innovative techniques for applying domination and double domination in IVTSFGs, demonstrating improved performance in managing CCNs. Comparative analysis with existing fuzzy graph models highlights the advantages of IVTSFGs, particularly in capturing nuanced relationships within network structures. The research provides practical examples and empirical comparisons, showcasing the framework's effectiveness in various decision-making scenarios.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109650"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018086","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces the Interval-Valued T-Spherical Fuzzy Graph (IVTSFG), a novel extension of fuzzy graph theory designed to address imprecision in decision-making processes, network analysis, and Computer Communication Networks (CCNs). Integrating four types of membership degrees-membership, non-membership, abstinence, and hesitancy-the IVTSFG framework significantly enhances the ability to model and analyze complex systems with uncertain data. The study explores the theories of domination and double domination within the context of IVTSFGs, presenting new methods for evaluating network resilience and optimization. Key findings include the development of innovative techniques for applying domination and double domination in IVTSFGs, demonstrating improved performance in managing CCNs. Comparative analysis with existing fuzzy graph models highlights the advantages of IVTSFGs, particularly in capturing nuanced relationships within network structures. The research provides practical examples and empirical comparisons, showcasing the framework's effectiveness in various decision-making scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区间值 T 球形模糊图的支配和双重支配评价的计算机通信网络分析及其在决策问题中的应用
本研究介绍了区间值 T 球形模糊图(IVTSFG),它是模糊图理论的一种新扩展,旨在解决决策过程、网络分析和计算机通信网络(CCN)中的不确定性问题。IVTSFG 框架集成了四种成员度--成员度、非成员度、弃权度和犹豫度,大大提高了对具有不确定数据的复杂系统进行建模和分析的能力。该研究在 IVTSFG 的背景下探讨了支配和双重支配理论,提出了评估网络弹性和优化的新方法。研究的主要发现包括开发了在 IVTSFGs 中应用支配和双重支配的创新技术,从而提高了 CCNs 的管理性能。与现有模糊图模型的对比分析凸显了 IVTSFG 的优势,尤其是在捕捉网络结构中的细微关系方面。研究提供了实际案例和经验比较,展示了该框架在各种决策场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Chimney detection and size estimation from high-resolution optical satellite imagery using deep learning models Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding Learning discriminative representations by a Canonical Correlation Analysis-based Siamese Network for offline signature verification Decoding text from electroencephalography signals: A novel Hierarchical Gated Recurrent Unit with Masked Residual Attention Mechanism A novel hybrid data-driven domain generalization approach with dual-perspective feature fusion for intelligent fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1