Zili Wang , Jie Li , Xiaojian Liu , Shuyou Zhang , Yaochen Lin , Jianrong Tan
{"title":"Diameter-adjustable mandrel for thin-wall tube bending and its domain knowledge-integrated optimization design framework","authors":"Zili Wang , Jie Li , Xiaojian Liu , Shuyou Zhang , Yaochen Lin , Jianrong Tan","doi":"10.1016/j.engappai.2024.109634","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing demand for small-batch bending tube production, traditional bending dies require separate customization for each tube size, resulting in extended design cycles and high costs. To meet bending requirements for tubes of different diameters using a single mandrel, a novel adjustable diameter mechanism (DAM) and its optimization design method are proposed. Initially, the DAM based on a planetary bevel gear-screw transmission set is developed for bending tubes of varying diameters. Subsequently, a domain knowledge-integrated optimization design framework is introduced. To reduce the cost of acquiring training samples for training surrogate models, a monotonicity-constrained neural network based on cascade boosting architecture (CB-MCNN) is introduced that enhances prediction accuracy while maintaining monotonicity. To improve the optimization speed and quality of Evolutionary Algorithms (EAs), a domain knowledge-guided EA (DK-EA) method is proposed, incorporating domain knowledge into the population initialization phase. The results indicate that: (1) CB-MCNN outperforms traditional methods and shows excellent performance on small-sample datasets. (2) DK-EA accelerates optimization processes and produces better outcomes. As a result, the domain knowledge-integrated optimization design framework enables the DAM to achieve a wider diameter variation range and enhanced reliability. The optimized DAM demonstrates the capability to bend tubes with diameters of 46–60 mm.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109634"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017925","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the growing demand for small-batch bending tube production, traditional bending dies require separate customization for each tube size, resulting in extended design cycles and high costs. To meet bending requirements for tubes of different diameters using a single mandrel, a novel adjustable diameter mechanism (DAM) and its optimization design method are proposed. Initially, the DAM based on a planetary bevel gear-screw transmission set is developed for bending tubes of varying diameters. Subsequently, a domain knowledge-integrated optimization design framework is introduced. To reduce the cost of acquiring training samples for training surrogate models, a monotonicity-constrained neural network based on cascade boosting architecture (CB-MCNN) is introduced that enhances prediction accuracy while maintaining monotonicity. To improve the optimization speed and quality of Evolutionary Algorithms (EAs), a domain knowledge-guided EA (DK-EA) method is proposed, incorporating domain knowledge into the population initialization phase. The results indicate that: (1) CB-MCNN outperforms traditional methods and shows excellent performance on small-sample datasets. (2) DK-EA accelerates optimization processes and produces better outcomes. As a result, the domain knowledge-integrated optimization design framework enables the DAM to achieve a wider diameter variation range and enhanced reliability. The optimized DAM demonstrates the capability to bend tubes with diameters of 46–60 mm.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.