Sangmin Song, Juhyoung Park, Juhwan Choi, Junho Lee, Kyohoon Jin, YoungBin Kim
{"title":"Korean football in-game conversation state tracking dataset for dialogue and turn level evaluation","authors":"Sangmin Song, Juhyoung Park, Juhwan Choi, Junho Lee, Kyohoon Jin, YoungBin Kim","doi":"10.1016/j.engappai.2024.109572","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research in dialogue state tracking has made significant progress in tracking user goals through dialogue-level and turn-level approaches, but existing research primarily focused on predicting dialogue-level belief states. In this study, we present the <strong>KICK</strong>: <strong>K</strong>orean football <strong>I</strong>n-game <strong>C</strong>onversation state trac<strong>K</strong>ing dataset, which introduces a conversation-based approach. This approach leverages the roles of casters and commentators within the self-contained context of sports broadcasting to examine how utterances impact the belief state at both the dialogue-level and turn-level. Towards this end, we propose a task that aims to track the states of a specific time turn and understand conversations during the entire game. The proposed dataset comprises 228 games and 2463 events over one season, with a larger number of tokens per dialogue and turn, making it more challenging than existing datasets. Experiments revealed that the roles and interactions of casters and commentators are important for improving the zero-shot state tracking performance. By better understanding role-based utterances, we identify distinct approaches to the overall game process and events at specific turns.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109572"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017305","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research in dialogue state tracking has made significant progress in tracking user goals through dialogue-level and turn-level approaches, but existing research primarily focused on predicting dialogue-level belief states. In this study, we present the KICK: Korean football In-game Conversation state tracKing dataset, which introduces a conversation-based approach. This approach leverages the roles of casters and commentators within the self-contained context of sports broadcasting to examine how utterances impact the belief state at both the dialogue-level and turn-level. Towards this end, we propose a task that aims to track the states of a specific time turn and understand conversations during the entire game. The proposed dataset comprises 228 games and 2463 events over one season, with a larger number of tokens per dialogue and turn, making it more challenging than existing datasets. Experiments revealed that the roles and interactions of casters and commentators are important for improving the zero-shot state tracking performance. By better understanding role-based utterances, we identify distinct approaches to the overall game process and events at specific turns.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.