Color image watermarking using vector SNCM-HMT

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-11-04 DOI:10.1016/j.jvcir.2024.104339
Hongxin Wang, Runtong Ma, Panpan Niu
{"title":"Color image watermarking using vector SNCM-HMT","authors":"Hongxin Wang,&nbsp;Runtong Ma,&nbsp;Panpan Niu","doi":"10.1016/j.jvcir.2024.104339","DOIUrl":null,"url":null,"abstract":"<div><div>An image watermarking scheme is typically evaluated using three main conflicting characteristics: imperceptibility, robustness, and capacity. Developing a good image watermarking method is challenging because it requires a trade-off between these three basic characteristics. In this paper, we proposed a statistical color image watermarking based on robust discrete nonseparable Shearlet transform (DNST)-fast quaternion generic polar complex exponential transform (FQGPCET) magnitude and vector skew-normal-Cauchy mixtures (SNCM)-hidden Markov tree (HMT). The proposed watermarking system consists of two main parts: watermark inserting and watermark extraction. In watermark inserting, we first perform DNST on R, G, and B components of color host image, respectively. We then compute block FQGPCET of DNST domain color components, and embed watermark signal in DNST-FQGPCET magnitudes using multiplicative approach. In watermark extraction, we first analyze the robustness and statistical characteristics of local DNST-FQGPCET magnitudes of color image. We then observe that, vector SNCM-HMT model can capture accurately the marginal distribution and multiple strong dependencies of local DNST-FQGPCET magnitudes. Meanwhile, vector SNCM-HMT parameters can be computed effectively using variational expectation–maximization (VEM) parameter estimation. Motivated by our modeling results, we finally develop a new statistical color image watermark decoder based on vector SNCM-HMT and maximum likelihood (ML) decision rule. Experimental results on extensive test images demonstrate that the proposed statistical color image watermarking provides a performance better than that of most of the state-of-the-art statistical methods and some deep learning approaches recently proposed in the literature.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"105 ","pages":"Article 104339"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002955","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

An image watermarking scheme is typically evaluated using three main conflicting characteristics: imperceptibility, robustness, and capacity. Developing a good image watermarking method is challenging because it requires a trade-off between these three basic characteristics. In this paper, we proposed a statistical color image watermarking based on robust discrete nonseparable Shearlet transform (DNST)-fast quaternion generic polar complex exponential transform (FQGPCET) magnitude and vector skew-normal-Cauchy mixtures (SNCM)-hidden Markov tree (HMT). The proposed watermarking system consists of two main parts: watermark inserting and watermark extraction. In watermark inserting, we first perform DNST on R, G, and B components of color host image, respectively. We then compute block FQGPCET of DNST domain color components, and embed watermark signal in DNST-FQGPCET magnitudes using multiplicative approach. In watermark extraction, we first analyze the robustness and statistical characteristics of local DNST-FQGPCET magnitudes of color image. We then observe that, vector SNCM-HMT model can capture accurately the marginal distribution and multiple strong dependencies of local DNST-FQGPCET magnitudes. Meanwhile, vector SNCM-HMT parameters can be computed effectively using variational expectation–maximization (VEM) parameter estimation. Motivated by our modeling results, we finally develop a new statistical color image watermark decoder based on vector SNCM-HMT and maximum likelihood (ML) decision rule. Experimental results on extensive test images demonstrate that the proposed statistical color image watermarking provides a performance better than that of most of the state-of-the-art statistical methods and some deep learning approaches recently proposed in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用矢量 SNCM-HMT 对彩色图像进行水印处理
图像水印方案通常使用三个相互冲突的主要特征进行评估:不可感知性、鲁棒性和容量。开发一种好的图像水印方法具有挑战性,因为它需要在这三个基本特性之间进行权衡。在本文中,我们提出了一种基于鲁棒离散非可分剪切变换(DNST)-快速四元泛极性复指数变换(FQGPCET)幅度和矢量偏斜-正态-考奇混合物(SNCM)-隐藏马尔可夫树(HMT)的统计彩色图像水印。拟议的水印系统包括两个主要部分:水印插入和水印提取。在插入水印时,我们首先分别对彩色主图像的 R、G 和 B 分量执行 DNST。然后,我们计算 DNST 域彩色分量的块 FQGPCET,并使用乘法方法将水印信号嵌入 DNST-FQGPCET 幅值中。在提取水印时,我们首先分析了彩色图像局部 DNST-FQGPCET 幅值的鲁棒性和统计特征。结果表明,矢量 SNCM-HMT 模型能准确捕捉局部 DNST-FQGPCET 幅值的边际分布和多重强依赖关系。同时,矢量 SNCM-HMT 参数可通过变分期望最大化(VEM)参数估计法有效计算。在建模结果的激励下,我们最终开发出一种基于向量 SNCM-HMT 和最大似然 (ML) 决策规则的新型统计彩色图像水印解码器。在大量测试图像上的实验结果表明,所提出的统计彩色图像水印的性能优于大多数最先进的统计方法和最近在文献中提出的一些深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3 Faster-slow network fused with enhanced fine-grained features for action recognition Lightweight macro-pixel quality enhancement network for light field images compressed by versatile video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1