{"title":"Synthesis and characterization of novel high-oil-absorbing resin based on spherical nanocrystal cellulose","authors":"Enfa Fu , Lei He , Jie Chao , Xiande Dai","doi":"10.1016/j.molstruc.2024.140622","DOIUrl":null,"url":null,"abstract":"<div><div>High-oil-absorbing resin is one of new self-swelling oil-absorbing materials, which can be used to effectively solve oil-spill problems. In this study, spherical nanocrystalline cellulose (SNC) was successfully prepared by the hydrolysis of microcrystalline cellulose, then SNC was grafted with MA and MMA to prepare novel high-oil-absorbing resin SNC-g-P(MA-co-PMMA). The structure, surface morphology, oil absorbency and thermal behavior of the resins were in-depth characterized. Furthermore, the effects of different reaction factors were studied to obtain optimized reaction conditions. The maximum oil absorbency (8.5 g/g) for SNC-g-P(MA-co-MMA) was achieved by optimizing the reaction conditions. And it exhibits higher thermal stability. Moreover, the first-order kinetic model is more appropriate to discuss the oil-absorbing kinetics of SNC-g-P(MA-co-PMMA), suggesting that the oil-absorbing process is mainly determined by the diffusion of oil molecules on the surface. Compared with reported previous research, outstanding oil-absorbing performance and higher thermal stability of SNC-g-P(MA-co-PMMA) are due to larger specific surface area and effective network volume after the introduction SNC. Benefiting from cheap raw materials (cellulose) and simple manufacturing process, the proposed approach can contribute to the mass manufacturing of cheap high-oil-absorbing resin products with excellent oil absorbency, and it is useful for oil pollution treatment.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140622"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031302","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-oil-absorbing resin is one of new self-swelling oil-absorbing materials, which can be used to effectively solve oil-spill problems. In this study, spherical nanocrystalline cellulose (SNC) was successfully prepared by the hydrolysis of microcrystalline cellulose, then SNC was grafted with MA and MMA to prepare novel high-oil-absorbing resin SNC-g-P(MA-co-PMMA). The structure, surface morphology, oil absorbency and thermal behavior of the resins were in-depth characterized. Furthermore, the effects of different reaction factors were studied to obtain optimized reaction conditions. The maximum oil absorbency (8.5 g/g) for SNC-g-P(MA-co-MMA) was achieved by optimizing the reaction conditions. And it exhibits higher thermal stability. Moreover, the first-order kinetic model is more appropriate to discuss the oil-absorbing kinetics of SNC-g-P(MA-co-PMMA), suggesting that the oil-absorbing process is mainly determined by the diffusion of oil molecules on the surface. Compared with reported previous research, outstanding oil-absorbing performance and higher thermal stability of SNC-g-P(MA-co-PMMA) are due to larger specific surface area and effective network volume after the introduction SNC. Benefiting from cheap raw materials (cellulose) and simple manufacturing process, the proposed approach can contribute to the mass manufacturing of cheap high-oil-absorbing resin products with excellent oil absorbency, and it is useful for oil pollution treatment.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.