Equation of state for nanopores and shale: Pore size–dependent acentric factor

Mehdi Alipour Kallehbasti, A. Sakhaee-Pour
{"title":"Equation of state for nanopores and shale: Pore size–dependent acentric factor","authors":"Mehdi Alipour Kallehbasti,&nbsp;A. Sakhaee-Pour","doi":"10.1016/j.geoen.2024.213470","DOIUrl":null,"url":null,"abstract":"<div><div>Nanopores pose a challenge to phase-behavior modeling when using the equation of state (EOS), and common methods do not capture their vapor pressure or become difficult to implement because they require additional tuning parameters. This study focuses on improving the vapor-pressure prediction of EOS in nanopores by proposing a pore size–dependent acentric factor (ACF). It determines the ACF from experimental data and implements it in EOS along with critical pressure and temperature. The proposed approach is then applied to the vapor-pressure measurements of nitrogen, argon, oxygen, methane, and ethane in pores ranging from 3.5 nm to 8.1 nm. The results show that the ACF in nanopores increases as the pore size decreases, and the degree of size dependency varies across different pure components. The results also demonstrate that the proposed approach enables EOS predictions to match the measurements with good accuracy. This study quantifies the effects of pore size on the ACF for the first time and presents simple correlations for estimating the ACF when the pore radius is smaller than 10 nm. The proposed approach simplifies the application of EOS in nanopores and unconventional hydrocarbon reservoirs.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"244 ","pages":"Article 213470"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024008406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanopores pose a challenge to phase-behavior modeling when using the equation of state (EOS), and common methods do not capture their vapor pressure or become difficult to implement because they require additional tuning parameters. This study focuses on improving the vapor-pressure prediction of EOS in nanopores by proposing a pore size–dependent acentric factor (ACF). It determines the ACF from experimental data and implements it in EOS along with critical pressure and temperature. The proposed approach is then applied to the vapor-pressure measurements of nitrogen, argon, oxygen, methane, and ethane in pores ranging from 3.5 nm to 8.1 nm. The results show that the ACF in nanopores increases as the pore size decreases, and the degree of size dependency varies across different pure components. The results also demonstrate that the proposed approach enables EOS predictions to match the measurements with good accuracy. This study quantifies the effects of pore size on the ACF for the first time and presents simple correlations for estimating the ACF when the pore radius is smaller than 10 nm. The proposed approach simplifies the application of EOS in nanopores and unconventional hydrocarbon reservoirs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米孔和页岩的状态方程:孔隙大小与中心因子有关
在使用状态方程(EOS)进行相行为建模时,纳米孔对建模提出了挑战,常见的方法无法捕捉其蒸汽压力,或者由于需要额外的调整参数而难以实施。本研究的重点是通过提出与孔径大小相关的中心因子(ACF)来改进纳米孔中 EOS 的蒸汽压力预测。它根据实验数据确定 ACF,并将其与临界压力和温度一起应用于 EOS。然后将提出的方法应用于氮气、氩气、氧气、甲烷和乙烷在 3.5 纳米到 8.1 纳米孔隙中的蒸汽压力测量。结果表明,纳米孔隙中的 ACF 会随着孔隙尺寸的减小而增大,不同纯成分对尺寸的依赖程度也不同。结果还表明,所提出的方法可以使 EOS 预测结果与测量结果准确吻合。本研究首次量化了孔径对 ACF 的影响,并提出了当孔径小于 10 nm 时估算 ACF 的简单相关性。所提出的方法简化了 EOS 在纳米孔隙和非常规油气藏中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of microfracture propagation under mechanical–chemical coupling conditions considering dissolution Carbon steel pipeline CO2 erosion-corrosion damage prediction model and numerical simulation research Propped fracture conductivity in shale oil reservoirs: Prediction model and influencing factors Numerical study of using dual sources constructed via deconvolution to suppress the collar waves in acoustic logging while drilling Numerical investigation on heat extraction performance of supercritical CO2 in depleted oil and gas reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1