Integrating temporal deep learning models for predicting screen-out risk levels in hydraulic fracturing

Ying Qiao , Cuishan Lin , Yuguo Zhao , Liangzhi Zhou
{"title":"Integrating temporal deep learning models for predicting screen-out risk levels in hydraulic fracturing","authors":"Ying Qiao ,&nbsp;Cuishan Lin ,&nbsp;Yuguo Zhao ,&nbsp;Liangzhi Zhou","doi":"10.1016/j.geoen.2024.213442","DOIUrl":null,"url":null,"abstract":"<div><div>Amid the transformative shift in global energy structures, the exploitation and utilization of shale gas, an essential unconventional natural gas resource, have drawn widespread attention from both industrial and academic circles. However, screen-out incidents during hydraulic fracturing operations pose significant obstacles to extraction efficiency and safety. Traditional prediction methods, which rely on empirical estimations and simplified models, are deficient in accuracy and real-time applicability. Addressing this, our study introduces a novel deep learning ensemble integrating Gated Recurrent Units (GRU), Transformer, and One-Dimensional Convolutional Neural Networks (1D-CNN) for precise screen-out prediction. This approach markedly improves predictive accuracy by efficiently processing time-series data and capturing the complex dynamics of fracturing processes. Furthermore, the application of the correlation coefficient method and random forest algorithm for feature selection optimizes model input and further enhances prediction accuracy and operational efficiency. Our comparative analysis demonstrates the model’s superiority, achieving an F1 score of 0.951 and a loss of 0.430, clearly surpassing traditional and other deep learning methods. This integration of advanced neural architectures and feature selection techniques not only advances screen-out prediction but also yields practical insights for optimizing shale gas extraction strategies and enhancing safety.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"244 ","pages":"Article 213442"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024008121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Amid the transformative shift in global energy structures, the exploitation and utilization of shale gas, an essential unconventional natural gas resource, have drawn widespread attention from both industrial and academic circles. However, screen-out incidents during hydraulic fracturing operations pose significant obstacles to extraction efficiency and safety. Traditional prediction methods, which rely on empirical estimations and simplified models, are deficient in accuracy and real-time applicability. Addressing this, our study introduces a novel deep learning ensemble integrating Gated Recurrent Units (GRU), Transformer, and One-Dimensional Convolutional Neural Networks (1D-CNN) for precise screen-out prediction. This approach markedly improves predictive accuracy by efficiently processing time-series data and capturing the complex dynamics of fracturing processes. Furthermore, the application of the correlation coefficient method and random forest algorithm for feature selection optimizes model input and further enhances prediction accuracy and operational efficiency. Our comparative analysis demonstrates the model’s superiority, achieving an F1 score of 0.951 and a loss of 0.430, clearly surpassing traditional and other deep learning methods. This integration of advanced neural architectures and feature selection techniques not only advances screen-out prediction but also yields practical insights for optimizing shale gas extraction strategies and enhancing safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合时间深度学习模型,预测水力压裂中的屏蔽风险水平
在全球能源结构转型的背景下,页岩气这一重要的非常规天然气资源的开采和利用引起了工业界和学术界的广泛关注。然而,在水力压裂作业过程中发生的漏筛事故对开采效率和安全性构成了重大障碍。传统的预测方法依赖于经验估计和简化模型,在准确性和实时适用性方面存在不足。针对这一问题,我们的研究引入了一种新颖的深度学习组合,该组合集成了门控循环单元(GRU)、变压器和一维卷积神经网络(1D-CNN),可用于精确的漏筛预测。这种方法通过高效处理时间序列数据和捕捉压裂过程的复杂动态,显著提高了预测精度。此外,相关系数法和随机森林算法在特征选择中的应用优化了模型输入,进一步提高了预测精度和运行效率。我们的对比分析表明了该模型的优越性,其 F1 得分为 0.951,损失为 0.430,明显超过了传统和其他深度学习方法。这种先进的神经架构与特征选择技术的融合不仅推进了出屏预测,还为优化页岩气开采策略和提高安全性提供了实用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of microfracture propagation under mechanical–chemical coupling conditions considering dissolution Carbon steel pipeline CO2 erosion-corrosion damage prediction model and numerical simulation research Propped fracture conductivity in shale oil reservoirs: Prediction model and influencing factors Numerical study of using dual sources constructed via deconvolution to suppress the collar waves in acoustic logging while drilling Numerical investigation on heat extraction performance of supercritical CO2 in depleted oil and gas reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1