Agostino Cembalo , Jacques Borée , Patrick Coirault , Clément Dumand
{"title":"Large scale response of a vehicle wake to on-road perturbations","authors":"Agostino Cembalo , Jacques Borée , Patrick Coirault , Clément Dumand","doi":"10.1016/j.jweia.2024.105933","DOIUrl":null,"url":null,"abstract":"<div><div>Under disturbed upstream conditions, numerous wind tunnel studies have shown that the near wake region of a vehicle loses its average symmetry, resulting in an increase of drag. The aim of this research work is to analyze the large scale response of a vehicle wake to on-road perturbations by using an instrumented vehicle and by comparing scale one wind tunnel tests, track trials and on road experiments. More precisely, in all these tests, we focus on the analysis of the asymmetry of the pressure distribution at the base. Proper Orthogonal Decomposition (POD) is used. For all cases considered, POD analysis reveals two dominant modes, respectively associated with vertical and horizontal wake large scale reorganization. More than 50% of the total energy is carried by these two modes and this value increases significantly for on-road tests. Noteworthy, the low-frequency energy content of the temporal coefficients of these modes is significantly higher on-road. Low frequencies (even very low ones) then play a major role, corresponding to a quasi-static perturbation domain of the velocity seen by the vehicle. We show that a quasi-steady exploration of the on-road yaw angle statistical distribution during a wind tunnel test captures phenomena similar to those observed on the road and is therefore interesting to evaluate on-road aerodynamic performances. This also opens perspectives for developing closed loop control strategies aiming to maintain a prescribed wake balance in order to reduce drag experienced on the road.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"255 ","pages":"Article 105933"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Under disturbed upstream conditions, numerous wind tunnel studies have shown that the near wake region of a vehicle loses its average symmetry, resulting in an increase of drag. The aim of this research work is to analyze the large scale response of a vehicle wake to on-road perturbations by using an instrumented vehicle and by comparing scale one wind tunnel tests, track trials and on road experiments. More precisely, in all these tests, we focus on the analysis of the asymmetry of the pressure distribution at the base. Proper Orthogonal Decomposition (POD) is used. For all cases considered, POD analysis reveals two dominant modes, respectively associated with vertical and horizontal wake large scale reorganization. More than 50% of the total energy is carried by these two modes and this value increases significantly for on-road tests. Noteworthy, the low-frequency energy content of the temporal coefficients of these modes is significantly higher on-road. Low frequencies (even very low ones) then play a major role, corresponding to a quasi-static perturbation domain of the velocity seen by the vehicle. We show that a quasi-steady exploration of the on-road yaw angle statistical distribution during a wind tunnel test captures phenomena similar to those observed on the road and is therefore interesting to evaluate on-road aerodynamic performances. This also opens perspectives for developing closed loop control strategies aiming to maintain a prescribed wake balance in order to reduce drag experienced on the road.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.