Breaking the gap between label correlation and instance similarity via new multi-label contrastive learning

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-29 DOI:10.1016/j.neucom.2024.128719
Xin Wang , Wang Zhang , Yuhong Wu , Xingpeng Zhang , Chao Wang , Huayi Zhan
{"title":"Breaking the gap between label correlation and instance similarity via new multi-label contrastive learning","authors":"Xin Wang ,&nbsp;Wang Zhang ,&nbsp;Yuhong Wu ,&nbsp;Xingpeng Zhang ,&nbsp;Chao Wang ,&nbsp;Huayi Zhan","doi":"10.1016/j.neucom.2024.128719","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-label text classification (MLTC) is a fundamental yet challenging task in natural language processing. Existing MLTC models mostly learn text representations and label correlations, separately; while the instance-level correlation, which is crucial for the classification is ignored. To rectify this, we propose a new multi-label contrastive learning model, that captures instance-level correlations, for the MLTC task. Specifically, we first learn label representations by using Graph Convolutional Network (GCN) on label co-occurrence graphs. We next learn text representations by taking label correlations into consideration. Through an attention mechanism, instance-level correlation can be established. To better utilize label correlations, we propose a new contrastive learning model, whose learning is guided by a new learning objective, to further refine label representations. We finally implement a <span><math><mi>k</mi></math></span>-NN mechanism, that identifies <span><math><mi>k</mi></math></span> nearest neighbors of a given text for final prediction. Intensive experimental studies over benchmark multi-label datasets demonstrate the effectiveness of our approach.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128719"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224014905","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label text classification (MLTC) is a fundamental yet challenging task in natural language processing. Existing MLTC models mostly learn text representations and label correlations, separately; while the instance-level correlation, which is crucial for the classification is ignored. To rectify this, we propose a new multi-label contrastive learning model, that captures instance-level correlations, for the MLTC task. Specifically, we first learn label representations by using Graph Convolutional Network (GCN) on label co-occurrence graphs. We next learn text representations by taking label correlations into consideration. Through an attention mechanism, instance-level correlation can be established. To better utilize label correlations, we propose a new contrastive learning model, whose learning is guided by a new learning objective, to further refine label representations. We finally implement a k-NN mechanism, that identifies k nearest neighbors of a given text for final prediction. Intensive experimental studies over benchmark multi-label datasets demonstrate the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过新型多标签对比学习打破标签相关性与实例相似性之间的差距
多标签文本分类(MLTC)是自然语言处理中一项基本而又具有挑战性的任务。现有的多标签文本分类模型大多分别学习文本表征和标签相关性,而忽略了对分类至关重要的实例级相关性。为了纠正这一问题,我们针对 MLTC 任务提出了一种新的多标签对比学习模型,该模型能捕捉实例级相关性。具体来说,我们首先在标签共现图上使用图卷积网络(GCN)学习标签表示。接下来,我们通过考虑标签相关性来学习文本表征。通过注意机制,可以建立实例级相关性。为了更好地利用标签相关性,我们提出了一种新的对比学习模型,其学习由新的学习目标引导,以进一步完善标签表征。最后,我们实施了一种 k-NN 机制,该机制可识别给定文本的 k 个近邻以进行最终预测。对基准多标签数据集的深入实验研究证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Dismantling strategies for cost networks based on multi-view deep learning Contrastive coarse-to-fine medical segmentation with prototype guidance and dual-granularity fusion LECMARL: A cooperative multi-agent reinforcement learning method based on lazy mechanisms and efficient exploration Offset-corrected query generation strategies for cross-modality misalignment in 3D object detection: aligning LiDAR and camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1