Xiaofeng Zou , Yuanxi Peng , Tuo Li , Lingjun Kong , Lu Zhang
{"title":"Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions","authors":"Xiaofeng Zou , Yuanxi Peng , Tuo Li , Lingjun Kong , Lu Zhang","doi":"10.1016/j.parco.2024.103121","DOIUrl":null,"url":null,"abstract":"<div><div>The ML-KEM standard based on Kyber algorithm is one of the post-quantum cryptography (PQC) standards released by the National Institute of Standards and Technology (NIST) to withstand quantum attacks. To increase throughput and reduce the execution time that is limited by the high computational complexity of the Kyber algorithm, an RISC-V-based processor Seesaw is designed to accelerate the Kyber algorithm. The 32 specialized extension instructions are mainly designed to enhance the parallel computing ability of the processor and accelerate all the processes of the Kyber algorithm by thoroughly analyzing its characteristics. Subsequently, by carefully designing hardware such as poly vector registers and algorithm execution units on the RISC-V processor, the support of microarchitecture for extension instructions was achieved. Seesaw supports 4096-bit vector calculations through its poly vector registers and execution unit to meet high-throughput requirements and is implemented on the field-programmable gate array (FPGA). In addition, we modify the compiler simultaneously to adapt to the instruction extension and execution of Seesaw. Experimental results indicate that the processor achieves a speed-up of 432<span><math><mo>×</mo></math></span> and 18864<span><math><mo>×</mo></math></span> for hash and NTT, respectively, compared with that without extension instructions and a speed-up of 5.6<span><math><mo>×</mo></math></span> for the execution of the Kyber algorithm compared with the advanced hardware design.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"123 ","pages":"Article 103121"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000590","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The ML-KEM standard based on Kyber algorithm is one of the post-quantum cryptography (PQC) standards released by the National Institute of Standards and Technology (NIST) to withstand quantum attacks. To increase throughput and reduce the execution time that is limited by the high computational complexity of the Kyber algorithm, an RISC-V-based processor Seesaw is designed to accelerate the Kyber algorithm. The 32 specialized extension instructions are mainly designed to enhance the parallel computing ability of the processor and accelerate all the processes of the Kyber algorithm by thoroughly analyzing its characteristics. Subsequently, by carefully designing hardware such as poly vector registers and algorithm execution units on the RISC-V processor, the support of microarchitecture for extension instructions was achieved. Seesaw supports 4096-bit vector calculations through its poly vector registers and execution unit to meet high-throughput requirements and is implemented on the field-programmable gate array (FPGA). In addition, we modify the compiler simultaneously to adapt to the instruction extension and execution of Seesaw. Experimental results indicate that the processor achieves a speed-up of 432 and 18864 for hash and NTT, respectively, compared with that without extension instructions and a speed-up of 5.6 for the execution of the Kyber algorithm compared with the advanced hardware design.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications