SDDA: A progressive self-distillation with decoupled alignment for multimodal image–text classification

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-26 DOI:10.1016/j.neucom.2024.128794
Xiaohao Chen , Qianjun Shuai , Feng Hu , Yongqiang Cheng
{"title":"SDDA: A progressive self-distillation with decoupled alignment for multimodal image–text classification","authors":"Xiaohao Chen ,&nbsp;Qianjun Shuai ,&nbsp;Feng Hu ,&nbsp;Yongqiang Cheng","doi":"10.1016/j.neucom.2024.128794","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal image–text classification endeavors to deduce the correct category based on the information encapsulated in image–text pairs. Despite the commendable performance achieved by current image–text methodologies, the intrinsic multimodal heterogeneity persists as a challenge, with the contributions from diverse modalities exhibiting considerable variance. In this study, we address this issue by introducing a novel decoupled multimodal Self-Distillation (SDDA) approach, aimed at facilitating fine-grained alignment of shared and private features of image–text features in a low-dimensional space, thereby reducing information redundancy. Specifically, each modality representation is decoupled in an autoregressive manner into two segments within a modality-irrelevant/exclusive space. SDDA imparts additional knowledge transfer to each decoupled segment via self-distillation, while also offering flexible, richer multimodal knowledge supervision for unimodal features. Multimodal classification experiments conducted on two publicly available benchmark datasets verified the efficacy of the algorithm, demonstrating that SDDA surpasses the state-of-the-art baselines.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128794"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015650","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal image–text classification endeavors to deduce the correct category based on the information encapsulated in image–text pairs. Despite the commendable performance achieved by current image–text methodologies, the intrinsic multimodal heterogeneity persists as a challenge, with the contributions from diverse modalities exhibiting considerable variance. In this study, we address this issue by introducing a novel decoupled multimodal Self-Distillation (SDDA) approach, aimed at facilitating fine-grained alignment of shared and private features of image–text features in a low-dimensional space, thereby reducing information redundancy. Specifically, each modality representation is decoupled in an autoregressive manner into two segments within a modality-irrelevant/exclusive space. SDDA imparts additional knowledge transfer to each decoupled segment via self-distillation, while also offering flexible, richer multimodal knowledge supervision for unimodal features. Multimodal classification experiments conducted on two publicly available benchmark datasets verified the efficacy of the algorithm, demonstrating that SDDA surpasses the state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SDDA:用于多模态图像-文本分类的解耦对齐渐进式自馏分法
多模态图像文本分类致力于根据图像文本对所包含的信息推断出正确的类别。尽管目前的图像-文本方法取得了值得称道的性能,但内在的多模态异质性仍然是一个挑战,来自不同模态的贡献表现出相当大的差异。在本研究中,我们通过引入一种新颖的解耦多模态自蒸馏(SDDA)方法来解决这一问题,该方法旨在促进图像-文本特征的共享特征和私有特征在低维空间中的精细匹配,从而减少信息冗余。具体来说,每个模态表示以自回归的方式解耦为模态无关/专属空间内的两个片段。SDDA 通过自馏分将额外的知识转移到每个解耦段,同时还为单模态特征提供灵活、更丰富的多模态知识监督。在两个公开的基准数据集上进行的多模态分类实验验证了该算法的有效性,证明 SDDA 超越了最先进的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1