{"title":"Atomic-scale insights into the microstructure and interface evolution mechanism of copper/tantalum nanofilms during ultra-precision grinding","authors":"Kezhong Xu, Yuqi Zhou, Yuhan Gao, Yuxin Chen, Xin Lei, Ziniu Yu, Fulong Zhu","doi":"10.1016/j.surfin.2024.105393","DOIUrl":null,"url":null,"abstract":"<div><div>The copper (Cu)/tantalum (Ta) nanofilms are the vital component in the through silicon via (TSV) wafer. However, the current lack of research on the ultra-precision machining of Cu/Ta nanofilms limits the development of TSV-based 3D integration technologies. In this work, molecular dynamics simulations are conducted to reveal the microstructure and interface evolution mechanism of Cu/Ta nanofilms during nano-grinding under various grinding depths. The results show that the material removal mode differs between the Cu and Ta layers, and the thickness of the subsurface damage layer of the Cu layer is greater than that of the Ta layer. The Cu/Ta interface is well stabilized, and small amounts of micro-defects appear only at larger grinding depths after grinding. The lattice mismatch of the constituent layers and the hindering role by the interface lead to stress concentration at the interface, and it is more obvious with increasing grinding depth. Nevertheless, there is a significant stress release after grinding. Our computations indicate that the competition between the evolution of interfacial structures and discrepancies in the physical properties of constituent layers leads to an increase in grinding forces at the interface. Furthermore, the heat transfer is obstructed by the Cu/Ta interface. This study provides valuable insights into the grinding mechanisms of Cu/Ta nanofilms, which is conducive to further improving the manufacturing process of the TSV wafer and enhancing the performance of microelectronic devices.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105393"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015499","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The copper (Cu)/tantalum (Ta) nanofilms are the vital component in the through silicon via (TSV) wafer. However, the current lack of research on the ultra-precision machining of Cu/Ta nanofilms limits the development of TSV-based 3D integration technologies. In this work, molecular dynamics simulations are conducted to reveal the microstructure and interface evolution mechanism of Cu/Ta nanofilms during nano-grinding under various grinding depths. The results show that the material removal mode differs between the Cu and Ta layers, and the thickness of the subsurface damage layer of the Cu layer is greater than that of the Ta layer. The Cu/Ta interface is well stabilized, and small amounts of micro-defects appear only at larger grinding depths after grinding. The lattice mismatch of the constituent layers and the hindering role by the interface lead to stress concentration at the interface, and it is more obvious with increasing grinding depth. Nevertheless, there is a significant stress release after grinding. Our computations indicate that the competition between the evolution of interfacial structures and discrepancies in the physical properties of constituent layers leads to an increase in grinding forces at the interface. Furthermore, the heat transfer is obstructed by the Cu/Ta interface. This study provides valuable insights into the grinding mechanisms of Cu/Ta nanofilms, which is conducive to further improving the manufacturing process of the TSV wafer and enhancing the performance of microelectronic devices.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)