Boosting multi-document summarization with hierarchical graph convolutional networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-05 DOI:10.1016/j.neucom.2024.128753
Yingjie Song , Li Yang , Wenming Luo , Xiong Xiao , Zhuo Tang
{"title":"Boosting multi-document summarization with hierarchical graph convolutional networks","authors":"Yingjie Song ,&nbsp;Li Yang ,&nbsp;Wenming Luo ,&nbsp;Xiong Xiao ,&nbsp;Zhuo Tang","doi":"10.1016/j.neucom.2024.128753","DOIUrl":null,"url":null,"abstract":"<div><div>The input of the multi-document summarization task is usually long and has high redundancy. Encoding multiple documents is a challenge for the Seq2Seq architecture. The way of concatenating multiple documents into a sequence ignores the relation between documents. Attention-based Seq2Seq architectures have slightly improved the cross-document relation modeling for multi-document summarization. However, these methods ignore the relation between sentences, and there is little improvement that can be achieved through the attention mechanism alone. This paper proposes a hierarchical approach to leveraging the relation between words, sentences, and documents for abstractive multi-document summarization. Our model employs the Graph Convolutional Networks (GCN) for capturing the cross-document and cross-sentence relations. The GCN module can enrich semantic representations by generating high-level hidden features. Our model achieves significant improvement over the attention-based baseline, beating the Hierarchical Transformer by 3.4/1.64, 1.92/1.44 ROUGE-1/2 F1 points on the Multi-News and WikiSum datasets, respectively. Experimental results demonstrate that our delivered method brings substantial improvements over several strong baselines.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128753"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015248","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The input of the multi-document summarization task is usually long and has high redundancy. Encoding multiple documents is a challenge for the Seq2Seq architecture. The way of concatenating multiple documents into a sequence ignores the relation between documents. Attention-based Seq2Seq architectures have slightly improved the cross-document relation modeling for multi-document summarization. However, these methods ignore the relation between sentences, and there is little improvement that can be achieved through the attention mechanism alone. This paper proposes a hierarchical approach to leveraging the relation between words, sentences, and documents for abstractive multi-document summarization. Our model employs the Graph Convolutional Networks (GCN) for capturing the cross-document and cross-sentence relations. The GCN module can enrich semantic representations by generating high-level hidden features. Our model achieves significant improvement over the attention-based baseline, beating the Hierarchical Transformer by 3.4/1.64, 1.92/1.44 ROUGE-1/2 F1 points on the Multi-News and WikiSum datasets, respectively. Experimental results demonstrate that our delivered method brings substantial improvements over several strong baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分层图卷积网络促进多文档摘要分析
多文档摘要任务的输入通常较长,且冗余度较高。多文档编码是 Seq2Seq 架构面临的一个挑战。将多个文档连接成序列的方式忽略了文档之间的关系。基于注意力的 Seq2Seq 架构略微改进了多文档摘要的跨文档关系建模。但是,这些方法忽略了句子之间的关系,仅靠注意力机制所能实现的改进微乎其微。本文提出了一种分层方法,利用单词、句子和文档之间的关系进行抽象多文档摘要。我们的模型采用图卷积网络(GCN)来捕捉跨文档和跨句子的关系。GCN 模块可通过生成高级隐藏特征来丰富语义表征。与基于注意力的基线相比,我们的模型取得了显著的改进,在 Multi-News 和 WikiSum 数据集上分别以 3.4/1.64 和 1.92/1.44 ROUGE-1/2 F1 分数击败了 Hierarchical Transformer。实验结果表明,与几种强大的基线相比,我们所提供的方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Extending the learning using privileged information paradigm to logistic regression DoA-ViT: Dual-objective Affine Vision Transformer for Data Insufficiency CNN explanation methods for ordinal regression tasks Superpixel semantics representation and pre-training for vision–language tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1