{"title":"Paramagnetic susceptibility and spin correlation function of ferromagnetic metals in the critical region","authors":"N.B. Melnikov , A.S. Gulenko , B.I. Reser","doi":"10.1016/j.jmmm.2024.172634","DOIUrl":null,"url":null,"abstract":"<div><div>We study paramagnetic characteristics of ferromagnetic metals near the Curie temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> using the dynamic spin fluctuation theory. In contrast with most first-principles calculations, our results for the uniform paramagnetic susceptibility show a clear deviation from the Curie–Weiss law. We demonstrate that the susceptibility and correlation radius have the power-law behavior at temperatures up to 1.1–1.15<!--> <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>, which gives an estimate for the region of critical temperatures in metals. Our theoretical critical exponents for Fe, Co, and Ni are in reasonable agreement with the low-field susceptibility measurements and neutron scattering experiments.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"612 ","pages":"Article 172634"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study paramagnetic characteristics of ferromagnetic metals near the Curie temperature using the dynamic spin fluctuation theory. In contrast with most first-principles calculations, our results for the uniform paramagnetic susceptibility show a clear deviation from the Curie–Weiss law. We demonstrate that the susceptibility and correlation radius have the power-law behavior at temperatures up to 1.1–1.15 , which gives an estimate for the region of critical temperatures in metals. Our theoretical critical exponents for Fe, Co, and Ni are in reasonable agreement with the low-field susceptibility measurements and neutron scattering experiments.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.