Yu Hao , Janusz H. Hankiewicz , Robert E. Camley , Stephen E. Russek , Zbigniew Celinski
{"title":"Using NMR linewidth broadening for magnetic characterization of micrometer-size particles in silicone matrix","authors":"Yu Hao , Janusz H. Hankiewicz , Robert E. Camley , Stephen E. Russek , Zbigniew Celinski","doi":"10.1016/j.jmmm.2024.172644","DOIUrl":null,"url":null,"abstract":"<div><div>Standard magnetization measurements on samples of small magnetic particles may generate conflicting results. We compare the mass magnetization of MgZn ferrite particles in a compressed bulk material and in dry powder and find that at low fields the values can differ by as much as 50%. We show here that embedding the particles in a silicone matrix and measuring the NMR linewidth in combination with simulations establishes a new method to evaluate the magnetization of the particles at different fields and temperatures. The NMR results agree with the direct magnetization measurements of the powder samples and the magnetization measurements of the particles embedded in silicone. This work is motivated, in part, by studies on using small magnetic particles as MRI temperature indicators, and we compare the effectiveness of these particles for low-field and high-field MRI thermometry.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"612 ","pages":"Article 172644"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009351","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Standard magnetization measurements on samples of small magnetic particles may generate conflicting results. We compare the mass magnetization of MgZn ferrite particles in a compressed bulk material and in dry powder and find that at low fields the values can differ by as much as 50%. We show here that embedding the particles in a silicone matrix and measuring the NMR linewidth in combination with simulations establishes a new method to evaluate the magnetization of the particles at different fields and temperatures. The NMR results agree with the direct magnetization measurements of the powder samples and the magnetization measurements of the particles embedded in silicone. This work is motivated, in part, by studies on using small magnetic particles as MRI temperature indicators, and we compare the effectiveness of these particles for low-field and high-field MRI thermometry.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.