Sedimentary provenance and paleogeographic environment of a Mississippian coal-bearing unit in South China: Constraints from detrital zircon U-Pb ages and sedimentologic and geochemical evidence

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Palaeogeography, Palaeoclimatology, Palaeoecology Pub Date : 2024-11-13 DOI:10.1016/j.palaeo.2024.112605
Yuliang Mu, Rongsong Tian, Yong Fu, Li Yang, Jiang Hu
{"title":"Sedimentary provenance and paleogeographic environment of a Mississippian coal-bearing unit in South China: Constraints from detrital zircon U-Pb ages and sedimentologic and geochemical evidence","authors":"Yuliang Mu,&nbsp;Rongsong Tian,&nbsp;Yong Fu,&nbsp;Li Yang,&nbsp;Jiang Hu","doi":"10.1016/j.palaeo.2024.112605","DOIUrl":null,"url":null,"abstract":"<div><div>The Mississippian Xiangbai Formation in South China is one of the oldest coal-bearing sedimentary units in China. However, the sedimentary provenance, paleogeography, and coal formation patterns of the coal-bearing strata are not well constrained. We address this key issue by using a combination of detrital zircon U-Pb data, geochemical analyses of mudstone and shale, drilling data, and geologic field observations. With the exception of the early Paleozoic orogenic events (ca. 440–420 Ma) in the eastern part of the study area, the samples from the Xiangbai Formation exhibit similar detrital zircon U-Pb age distribution with major age peaks at ca. 980–960 Ma and several subordinate age peaks at ca. 800–780 and 600–500 Ma. These detrital zircon grains mainly originated from recycled sedimentary units. Field and drilling data reveal that the Xiangbai Formation was formed in a tidal flat environment with water depth gradually increasing from the bottom to the top, indicating an overall trend of transgression. The Mississippian Xiangbai Formation was deposited in an interglacial period. The Lower Xiangbai Formation was deposited in a relatively cold paleoclimate, gradually transitioning upwards to a warm and humid climate, creating favorable conditions for coal formation. The alternation of warming and cooling climates triggered high-frequency eustatic fluctuations, which led to multiple sedimentary cycles and resulted in thin, unstable coal seams within the Xiangbai Formation. Mississippian sedimentary paleogeography, palaeoclimate, and sedimentary provenance together dominate the coal-bearing clastic sediments in southwestern South China.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031018224005947","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Mississippian Xiangbai Formation in South China is one of the oldest coal-bearing sedimentary units in China. However, the sedimentary provenance, paleogeography, and coal formation patterns of the coal-bearing strata are not well constrained. We address this key issue by using a combination of detrital zircon U-Pb data, geochemical analyses of mudstone and shale, drilling data, and geologic field observations. With the exception of the early Paleozoic orogenic events (ca. 440–420 Ma) in the eastern part of the study area, the samples from the Xiangbai Formation exhibit similar detrital zircon U-Pb age distribution with major age peaks at ca. 980–960 Ma and several subordinate age peaks at ca. 800–780 and 600–500 Ma. These detrital zircon grains mainly originated from recycled sedimentary units. Field and drilling data reveal that the Xiangbai Formation was formed in a tidal flat environment with water depth gradually increasing from the bottom to the top, indicating an overall trend of transgression. The Mississippian Xiangbai Formation was deposited in an interglacial period. The Lower Xiangbai Formation was deposited in a relatively cold paleoclimate, gradually transitioning upwards to a warm and humid climate, creating favorable conditions for coal formation. The alternation of warming and cooling climates triggered high-frequency eustatic fluctuations, which led to multiple sedimentary cycles and resulted in thin, unstable coal seams within the Xiangbai Formation. Mississippian sedimentary paleogeography, palaeoclimate, and sedimentary provenance together dominate the coal-bearing clastic sediments in southwestern South China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
华南地区一个密西西比时期含煤单元的沉积产地和古地理环境:来自碎屑锆石U-Pb年龄以及沉积学和地球化学证据的制约因素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
期刊最新文献
Skolithos piperock from the Lower Devonian storm beds Sedimentary provenance and paleogeographic environment of a Mississippian coal-bearing unit in South China: Constraints from detrital zircon U-Pb ages and sedimentologic and geochemical evidence Paleoenvironmental evolution and East Asian monsoon records through three stages of paleochannels since the mid-pleistocene in the Western Bohai Sea, North China Late Neogene monsoonal climate in the southeastern margin of the Tibetan Plateau revealed by leaf physiognomy evidence Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1