An efficient second-order predictor–corrector infeasible primal–dual IPM algorithm with large iteration path updates for solving well-known SDO problems

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-11-14 DOI:10.1016/j.cam.2024.116379
Hadis Abedi, Behrouz Kheirfam
{"title":"An efficient second-order predictor–corrector infeasible primal–dual IPM algorithm with large iteration path updates for solving well-known SDO problems","authors":"Hadis Abedi,&nbsp;Behrouz Kheirfam","doi":"10.1016/j.cam.2024.116379","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a second-order predictor–corrector infeasible interior-point algorithm for semidefinite optimization in a new large neighborhood. The new large neighborhood, which is based on the spectral norm, is wider than the popular large neighborhoods based on the negative pseudo-infinity norm and the Frobenius norm. In each iteration, our algorithm calculates a new predictor direction using two modified systems and Yang et al. strategy. Then, this algorithm calculates a second-order corrector direction using the directions obtained in the predictor step. The iterates are determined by taking the largest possible step lengths along the search directions within the new large neighborhood. We prove that the algorithm is globally convergent and has <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></mrow></msup><mo>log</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> iteration complexity bound. Finally, the numerical experiments of the proposed algorithm confirm the efficiency and reliability of this approach.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116379"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006277","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a second-order predictor–corrector infeasible interior-point algorithm for semidefinite optimization in a new large neighborhood. The new large neighborhood, which is based on the spectral norm, is wider than the popular large neighborhoods based on the negative pseudo-infinity norm and the Frobenius norm. In each iteration, our algorithm calculates a new predictor direction using two modified systems and Yang et al. strategy. Then, this algorithm calculates a second-order corrector direction using the directions obtained in the predictor step. The iterates are determined by taking the largest possible step lengths along the search directions within the new large neighborhood. We prove that the algorithm is globally convergent and has O(n54+1qlogɛ1) iteration complexity bound. Finally, the numerical experiments of the proposed algorithm confirm the efficiency and reliability of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大迭代路径更新解决著名 SDO 问题的高效二阶预测器-校正器不可行原始双 IPM 算法
本文提出了一种新大邻域中半有限优化的二阶预测器-校正器不可行内点算法。新的大邻域基于谱规范,比目前流行的基于负伪无限规范和弗罗贝尼斯规范的大邻域更宽。在每次迭代中,我们的算法都会使用两个修改过的系统和 Yang 等人的策略计算一个新的预测方向。然后,该算法利用在预测器步骤中获得的方向计算二阶校正器方向。迭代是通过在新的大邻域内沿搜索方向取可能的最大步长来确定的。我们证明了该算法具有全局收敛性和 O(n54+1qlogɛ-1) 的迭代复杂度约束。最后,对所提算法的数值实验证实了这种方法的高效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
An efficient second-order predictor–corrector infeasible primal–dual IPM algorithm with large iteration path updates for solving well-known SDO problems Numerical simulation of the generalized modified Benjamin–Bona–Mahony equation using SBP-SAT in time A combined mixed finite element method and discontinuous Galerkin method for hybrid-dimensional fracture models of two-phase flow Meshfree generalized multiscale exponential integration method for parabolic problems Determination of the modified exterior Steklov eigenvalues via the reciprocity gap method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1