Effects of 3D microstructure of porous media on DNAPL migration and remediation by surface active agents in groundwater

Zhou Cheng , Ming Wu , Yanru Hao , Cehui Mo , Qusheng Li , Jianfeng Wu , Jichun Wu , Bill X. Hu , Guoping Lu
{"title":"Effects of 3D microstructure of porous media on DNAPL migration and remediation by surface active agents in groundwater","authors":"Zhou Cheng ,&nbsp;Ming Wu ,&nbsp;Yanru Hao ,&nbsp;Cehui Mo ,&nbsp;Qusheng Li ,&nbsp;Jianfeng Wu ,&nbsp;Jichun Wu ,&nbsp;Bill X. Hu ,&nbsp;Guoping Lu","doi":"10.1016/j.eehl.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Aquifers composed of porous granular media are important to human beings because they are capable of storing a large amount of groundwater. Contaminant migration and remediation in subsurface environments are strongly influenced by three-dimensional (3D) microstructures of porous media. In this study, fractal models are developed to investigate contaminant transport and surfactant-enhanced aquifer remediation (SEAR) for the regular tetrahedron microstructure (RTM) and right square pyramid microstructure (RSPM). The relationships of permeability and entry pressure are derived for these two kinds of 3D microstructures of granular porous media. Afterward, the difference in perchloroethylene (PCE) migration and SEAR efficiency between RTM and RSPM is investigated by the numerical simulation based on a synthetic heterogeneous granular aquifer. Results indicate that PCE penetrates faster and spreads farther in RSPM-based aquifers compared with RTM-based aquifers. Further, SEAR in RTM-based aquifers can achieve remediation efficiencies of 66.129%–92.214% with a mean of 84.324%, which is clearly lower than the SEAR efficiency of 70.149%–94.773% (with a mean of 89.122%) in RSPM-based aquifers. Findings are significant for understanding the 3D microstructure of porous media and how the microstructure of porous media affects macroscopic contaminant behaviors and remediation.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"3 4","pages":"Pages 466-475"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aquifers composed of porous granular media are important to human beings because they are capable of storing a large amount of groundwater. Contaminant migration and remediation in subsurface environments are strongly influenced by three-dimensional (3D) microstructures of porous media. In this study, fractal models are developed to investigate contaminant transport and surfactant-enhanced aquifer remediation (SEAR) for the regular tetrahedron microstructure (RTM) and right square pyramid microstructure (RSPM). The relationships of permeability and entry pressure are derived for these two kinds of 3D microstructures of granular porous media. Afterward, the difference in perchloroethylene (PCE) migration and SEAR efficiency between RTM and RSPM is investigated by the numerical simulation based on a synthetic heterogeneous granular aquifer. Results indicate that PCE penetrates faster and spreads farther in RSPM-based aquifers compared with RTM-based aquifers. Further, SEAR in RTM-based aquifers can achieve remediation efficiencies of 66.129%–92.214% with a mean of 84.324%, which is clearly lower than the SEAR efficiency of 70.149%–94.773% (with a mean of 89.122%) in RSPM-based aquifers. Findings are significant for understanding the 3D microstructure of porous media and how the microstructure of porous media affects macroscopic contaminant behaviors and remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔介质的三维微观结构对地下水中 DNAPL 迁移和表面活性物质修复的影响
由多孔颗粒介质组成的含水层能够储存大量地下水,因此对人类非常重要。污染物在地下环境中的迁移和修复受到多孔介质三维(3D)微结构的强烈影响。本研究建立了分形模型,以研究正四面体微结构(RTM)和正方体金字塔微结构(RSPM)的污染物迁移和表面活性剂强化含水层修复(SEAR)问题。推导出了这两种三维颗粒多孔介质微结构的渗透率和进入压力关系。随后,通过基于合成异质颗粒含水层的数值模拟,研究了 RTM 和 RSPM 在全氯乙烯(PCE)迁移和 SEAR 效率方面的差异。结果表明,与基于 RTM 的含水层相比,基于 RSPM 的含水层中 PCE 的渗透速度更快,扩散距离更远。此外,在基于 RTM 的含水层中,SEAR 的修复效率为 66.129%-92.214%,平均值为 84.324%,明显低于基于 RSPM 的含水层中 SEAR 的 70.149%-94.773%(平均值为 89.122%)。研究结果对于了解多孔介质的三维微观结构以及多孔介质的微观结构如何影响污染物的宏观行为和修复具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
期刊最新文献
From submission to publication: An editor's perspective on why Eco-Environment & Health stands out. Leveraging the One Health concept for arsenic sustainability Effects of 3D microstructure of porous media on DNAPL migration and remediation by surface active agents in groundwater Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review Piezocatalytic techniques and materials for degradation of organic pollutants from aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1