Efficient photocatalytic activity over α-MnS/ZIF-67 p-n junction: Revealing the synergistic effects of exposed crystal facets and built-in electric field mechanism
{"title":"Efficient photocatalytic activity over α-MnS/ZIF-67 p-n junction: Revealing the synergistic effects of exposed crystal facets and built-in electric field mechanism","authors":"Yanlong Yu , Yuan Tao , Sai Yan","doi":"10.1016/j.surfin.2024.105395","DOIUrl":null,"url":null,"abstract":"<div><div>In this investigation, we explored two series of composites comprising p-type α-MnS with selectively exposed {001} or {111} facets, coated with n-type ZIF-67 nanoparticles, to enhance the photocatalytic activity on Rhodamine B (RhB) degradation. The influence of the crystal facet orientation and the p-n junction on the photocatalytic efficacy was also well studied. The α-MnS/ZIF-67 composites displayed enhanced separation of charge carriers and superior light absorption capabilities, benefiting for efficient photocatalysis. The composites with cubic α-MnS morphology exhibited a pronouncedly higher photocatalytic activity relative to those with octahedral α-MnS morphology. The composition of α-MnS with ZIF-67 constructed the formation of a p-n junction with build-in electric field, extending the response into the visible region and promoting the mobility of charge carriers, thereby improving the photocatalytic performance. Our findings revealed that superoxide radicals (O<sub>2</sub><sup>-</sup>) were the major reactive species in the photocatalytic degradation process. This study contributes novel insights into the development of high-performance and stable metal-organic framework (MOF)-based photocatalysts through the crystal facet engineering and the construction of p-n junctions.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105395"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015517","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this investigation, we explored two series of composites comprising p-type α-MnS with selectively exposed {001} or {111} facets, coated with n-type ZIF-67 nanoparticles, to enhance the photocatalytic activity on Rhodamine B (RhB) degradation. The influence of the crystal facet orientation and the p-n junction on the photocatalytic efficacy was also well studied. The α-MnS/ZIF-67 composites displayed enhanced separation of charge carriers and superior light absorption capabilities, benefiting for efficient photocatalysis. The composites with cubic α-MnS morphology exhibited a pronouncedly higher photocatalytic activity relative to those with octahedral α-MnS morphology. The composition of α-MnS with ZIF-67 constructed the formation of a p-n junction with build-in electric field, extending the response into the visible region and promoting the mobility of charge carriers, thereby improving the photocatalytic performance. Our findings revealed that superoxide radicals (O2-) were the major reactive species in the photocatalytic degradation process. This study contributes novel insights into the development of high-performance and stable metal-organic framework (MOF)-based photocatalysts through the crystal facet engineering and the construction of p-n junctions.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)