Farzad Dehghan Marvasti , Ahmad Mirzaei , Reza Bakhshi-Jafarabadi , Marjan Popov
{"title":"Non-unit wavelet transform-based protection principle for modular multi-level converter-based HVDC grids using adaptive threshold setting","authors":"Farzad Dehghan Marvasti , Ahmad Mirzaei , Reza Bakhshi-Jafarabadi , Marjan Popov","doi":"10.1016/j.ijepes.2024.110352","DOIUrl":null,"url":null,"abstract":"<div><div>Wavelet transform has proven to be a capable tool for protection purposes in high voltage direct current (HVDC) transmission lines due to its desired speed and accuracy. However, the need to enhance the WT-based protection methods in terms of sensitivity and selectivity is of interest. This paper proposes a new non-unit WT-based protection method with adaptive threshold setting. According to the improved time-domain analytical approach, line-mode fault-generated voltage traveling wave is adopted to identify the internal faults. The simulation results for a multi-terminal modular multilevel converter-based HVDC grid in PSCAD/EMTDC corroborate accurate and fast internal faults detection of the proposed method, up to 850 Ω, i.e., almost three times larger than conventional schemes. In addition, the reliable performance of the presented method in a noisy environment, using relatively low sampling frequencies, and different sizes of current limiting inductors is demonstrated in the presented analysis. The generality of the presented analytical approach ensures that the proposed protection method can be extended to more complex HVDC grids.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"163 ","pages":"Article 110352"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005751","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wavelet transform has proven to be a capable tool for protection purposes in high voltage direct current (HVDC) transmission lines due to its desired speed and accuracy. However, the need to enhance the WT-based protection methods in terms of sensitivity and selectivity is of interest. This paper proposes a new non-unit WT-based protection method with adaptive threshold setting. According to the improved time-domain analytical approach, line-mode fault-generated voltage traveling wave is adopted to identify the internal faults. The simulation results for a multi-terminal modular multilevel converter-based HVDC grid in PSCAD/EMTDC corroborate accurate and fast internal faults detection of the proposed method, up to 850 Ω, i.e., almost three times larger than conventional schemes. In addition, the reliable performance of the presented method in a noisy environment, using relatively low sampling frequencies, and different sizes of current limiting inductors is demonstrated in the presented analysis. The generality of the presented analytical approach ensures that the proposed protection method can be extended to more complex HVDC grids.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.