New error estimates for the conjugate gradient method

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-11-12 DOI:10.1016/j.cam.2024.116357
Hanan Almutairi , Gérard Meurant , Lothar Reichel , Miodrag M. Spalević
{"title":"New error estimates for the conjugate gradient method","authors":"Hanan Almutairi ,&nbsp;Gérard Meurant ,&nbsp;Lothar Reichel ,&nbsp;Miodrag M. Spalević","doi":"10.1016/j.cam.2024.116357","DOIUrl":null,"url":null,"abstract":"<div><div>The conjugate gradient method is the default iterative method for the solution of linear systems of equations with a large symmetric positive definite matrix <span><math><mi>A</mi></math></span>. The development of techniques for estimating the norm of the error in iterates computed by this method has received considerable attention. Available methods for bracketing the <span><math><mi>A</mi></math></span>-norm of the error evaluate pairs of Gauss and Gauss–Radau quadrature rules to determine lower and upper bounds. The latter rule requires a user to allocate a node (the Radau node) between the origin and the smallest eigenvalue of the system matrix. The determination of such a node generally demands further computations to estimate the location of the smallest eigenvalue; see, e.g., Golub and Meurant (1997), Golub and Meurant (2010), Golub and Strakoš (1994), Meurant (1997), Meurant (1999). An approach that avoids the need to know a lower bound for the smallest eigenvalue is to replace the Gauss–Radau quadrature rule by an anti-Gauss rule as described by Calvetti et al. (2000). However, this approach may sometimes yield inaccurate error norm estimates. This paper proposes the use of pairs of Gauss and associated optimal averaged Gauss quadrature rules to estimate the <span><math><mi>A</mi></math></span>-norm of the error in iterates determined by the conjugate gradient method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116357"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The conjugate gradient method is the default iterative method for the solution of linear systems of equations with a large symmetric positive definite matrix A. The development of techniques for estimating the norm of the error in iterates computed by this method has received considerable attention. Available methods for bracketing the A-norm of the error evaluate pairs of Gauss and Gauss–Radau quadrature rules to determine lower and upper bounds. The latter rule requires a user to allocate a node (the Radau node) between the origin and the smallest eigenvalue of the system matrix. The determination of such a node generally demands further computations to estimate the location of the smallest eigenvalue; see, e.g., Golub and Meurant (1997), Golub and Meurant (2010), Golub and Strakoš (1994), Meurant (1997), Meurant (1999). An approach that avoids the need to know a lower bound for the smallest eigenvalue is to replace the Gauss–Radau quadrature rule by an anti-Gauss rule as described by Calvetti et al. (2000). However, this approach may sometimes yield inaccurate error norm estimates. This paper proposes the use of pairs of Gauss and associated optimal averaged Gauss quadrature rules to estimate the A-norm of the error in iterates determined by the conjugate gradient method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共轭梯度法的新误差估计
共轭梯度法是求解具有大型对称正定矩阵 A 的线性方程组的默认迭代法。用这种方法计算的迭代中误差规范的估算技术的发展受到了广泛关注。现有的括弧误差 A 准则方法会评估一对高斯和高斯-拉道正交规则,以确定下限和上限。后一种规则要求用户在原点和系统矩阵最小特征值之间分配一个节点(拉道节点)。确定这样一个节点通常需要进一步计算,以估计最小特征值的位置;参见 Golub 和 Meurant (1997)、Golub 和 Meurant (2010)、Golub 和 Strakoš (1994)、Meurant (1997)、Meurant (1999)。一种无需知道最小特征值下限的方法是用 Calvetti 等人(2000 年)所述的反高斯规则取代高斯-拉道正交规则。然而,这种方法有时会产生不准确的误差规范估计值。本文提出使用成对的高斯和相关最优平均高斯正交规则来估计共轭梯度法确定的迭代中误差的 A 准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
A novel fixed-time zeroing neural network and its application to path tracking control of wheeled mobile robots A Levenberg–Marquardt type algorithm with a Broyden-like update technique for solving nonlinear equations Invariant region property of weak Galerkin method for semilinear parabolic equations Editorial Board On computation of finite-part integrals of highly oscillatory functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1