Tailoring structural, morphological, and magnetic properties of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 hexaferrites via Ni substitution

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2024-11-16 DOI:10.1016/j.ssc.2024.115760
S. Elkhouad , Z. Yamkane , M. Sadik , R. Moubah , M. Moutataouia , H. Lassri , L. Bessais , J. Horcheni , H. Jaballah , M. Abdellaoui
{"title":"Tailoring structural, morphological, and magnetic properties of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 hexaferrites via Ni substitution","authors":"S. Elkhouad ,&nbsp;Z. Yamkane ,&nbsp;M. Sadik ,&nbsp;R. Moubah ,&nbsp;M. Moutataouia ,&nbsp;H. Lassri ,&nbsp;L. Bessais ,&nbsp;J. Horcheni ,&nbsp;H. Jaballah ,&nbsp;M. Abdellaoui","doi":"10.1016/j.ssc.2024.115760","DOIUrl":null,"url":null,"abstract":"<div><div>Sr<sub>0.54</sub>Ca<sub>0,46</sub>Fe<sub>6.5-x</sub>Ni<sub>x</sub>Al<sub>5.5</sub>O<sub>19</sub> (0 ≤ x ≤ 0.3) hexaferrite powders were prepared by the sol-gel auto combustion method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Magnetic measurements were performed with physical properties measurement system (PPMS). The lattice parameters, volume, and lattice strain were calculated. XRD analyses revealed a reduction in crystallite size with increasing Ni content. Interestingly, the magnetic analysis indicated that nickel, with its low magnetic moment, significantly enhanced the magnetization of Sr<sub>0.54</sub>Ca<sub>0.46</sub>Fe<sub>6.5-x</sub>Ni<sub>x</sub>Al<sub>5.5</sub>O<sub>19</sub> (0.0 ≤ x ≤ 0.3) and reduced the coercive field. Furthermore, the Law of Approach to Saturation (LAS) theory was employed to extract the first anisotropy constant, the anisotropy field, and several essential magnetic parameters, providing valuable insights into the magnetic behavior of samples.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"396 ","pages":"Article 115760"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003375","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Sr0.54Ca0,46Fe6.5-xNixAl5.5O19 (0 ≤ x ≤ 0.3) hexaferrite powders were prepared by the sol-gel auto combustion method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Magnetic measurements were performed with physical properties measurement system (PPMS). The lattice parameters, volume, and lattice strain were calculated. XRD analyses revealed a reduction in crystallite size with increasing Ni content. Interestingly, the magnetic analysis indicated that nickel, with its low magnetic moment, significantly enhanced the magnetization of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 (0.0 ≤ x ≤ 0.3) and reduced the coercive field. Furthermore, the Law of Approach to Saturation (LAS) theory was employed to extract the first anisotropy constant, the anisotropy field, and several essential magnetic parameters, providing valuable insights into the magnetic behavior of samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过镍替代调整 Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 六元晶的结构、形态和磁性能
采用溶胶-凝胶自动燃烧法制备了 Sr0.54Ca0,46Fe6.5-xNixAl5.5O19 (0 ≤ x ≤ 0.3) 六价铁氧体粉末,并使用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDX) 对其进行了表征。磁性测量采用物理性质测量系统(PPMS)进行。计算了晶格参数、体积和晶格应变。XRD 分析表明,随着镍含量的增加,晶粒尺寸减小。有趣的是,磁性分析表明,镍的低磁矩显著增强了 Sr0.54Ca0.46Fe6.5-xNixAl5.5O19(0.0 ≤ x ≤ 0.3)的磁化,并降低了矫顽力场。此外,还利用饱和定律(LAS)理论提取了第一各向异性常数、各向异性场和几个基本磁性参数,为了解样品的磁性行为提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
Tailoring structural, morphological, and magnetic properties of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 hexaferrites via Ni substitution Tuning band gap and improving optoelectronic properties of lead-free halide perovskites FrMI3 (M = Ge, Sn) under hydrostatic pressure The theoretical investigation of the electronic and optical properties of Fe-doped anatase TiO2 Chemical and structural features of spin-coated magnesium oxide (MgO) and its impact on the barrier parameters and current conduction process of Au/undoped-InP Schottky contact as an interfacial layer High pressure and high temperature synthesis of a new boron carbide phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1