Development of an advanced hydride reorientation model for Zircaloy cladding and its experimental validation

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-10-06 DOI:10.1016/j.jnucmat.2024.155445
Changhyun Jo, Dahyeon Woo, Youho Lee
{"title":"Development of an advanced hydride reorientation model for Zircaloy cladding and its experimental validation","authors":"Changhyun Jo,&nbsp;Dahyeon Woo,&nbsp;Youho Lee","doi":"10.1016/j.jnucmat.2024.155445","DOIUrl":null,"url":null,"abstract":"<div><div>Hydride reorientation, which occurs under hoop stress during cooling, stands out as a primary mechanism for material degradation in spent fuel management. The radial hydride fraction (RHF) is strongly involved in the mechanical integrity of cladding, highlighting the necessity for a robust modeling framework for quantitative analysis. However, the predictability of previous thermodynamic models for hydride reorientation in reactor-grade Cold Worked Stress Relieved (CWSR) Zircaloy has been hindered due to the intricate nature of hydride reorientation and the difficulties in characterizing microstructures. Recent successful EBSD characterization of reactor-grade CWSR Zircaloy has revealed valuable insights into microstructural characteristics of hydrides, enabling advancements in the modeling framework of hydride reorientation. This study aims to develop a thermodynamic model specifically focused on predicting the RHF. The developed thermodynamic model, based on classical nucleation theory, integrates aforementioned microstructural findings, combined with the Hydride-Nucleation-Growth-Dissolution (HNGD) model to capture transient precipitation behavior during cooling. Extensive experimental validations demonstrate enhanced predictability of the model. Additionally, the study examines the sensitivities of hydride reorientation to hydrogen concentration, applied stress, and cooling rate. It also provides predictions on reorientation behavior for engineering implications such as extension of wet storage, matrix hardening, recrystallization, and thermal cycling, supported by plausible explanations rooted in the underlying physical mechanisms elucidated through the model.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155445"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005452","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydride reorientation, which occurs under hoop stress during cooling, stands out as a primary mechanism for material degradation in spent fuel management. The radial hydride fraction (RHF) is strongly involved in the mechanical integrity of cladding, highlighting the necessity for a robust modeling framework for quantitative analysis. However, the predictability of previous thermodynamic models for hydride reorientation in reactor-grade Cold Worked Stress Relieved (CWSR) Zircaloy has been hindered due to the intricate nature of hydride reorientation and the difficulties in characterizing microstructures. Recent successful EBSD characterization of reactor-grade CWSR Zircaloy has revealed valuable insights into microstructural characteristics of hydrides, enabling advancements in the modeling framework of hydride reorientation. This study aims to develop a thermodynamic model specifically focused on predicting the RHF. The developed thermodynamic model, based on classical nucleation theory, integrates aforementioned microstructural findings, combined with the Hydride-Nucleation-Growth-Dissolution (HNGD) model to capture transient precipitation behavior during cooling. Extensive experimental validations demonstrate enhanced predictability of the model. Additionally, the study examines the sensitivities of hydride reorientation to hydrogen concentration, applied stress, and cooling rate. It also provides predictions on reorientation behavior for engineering implications such as extension of wet storage, matrix hardening, recrystallization, and thermal cycling, supported by plausible explanations rooted in the underlying physical mechanisms elucidated through the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为锆合金包层开发先进的氢化物重新定向模型及其实验验证
氢化物在冷却过程中的环向应力作用下发生重新定向,是乏燃料管理中材料降解的主要机制。径向氢化物分量(RHF)与包层的机械完整性密切相关,因此需要一个强大的建模框架来进行定量分析。然而,由于氢化物重新定向的复杂性和微结构表征的困难性,以往反应堆级冷作去应力(CWSR)锆合金中氢化物重新定向的热力学模型的可预测性受到了阻碍。最近对反应器级 CWSR 锆合金成功进行的 EBSD 表征揭示了氢化物微观结构特征的宝贵见解,从而推动了氢化物重新定向建模框架的发展。本研究旨在开发一个专门用于预测氢化物再取向的热力学模型。所开发的热力学模型以经典成核理论为基础,将上述微观结构发现与氢化物成核-生长-溶解(HNGD)模型相结合,以捕捉冷却过程中的瞬态沉淀行为。广泛的实验验证表明,该模型的可预测性得到了增强。此外,研究还考察了氢化物重新定向对氢浓度、外加应力和冷却速率的敏感性。研究还预测了重新取向行为对工程的影响,如延长湿储存、基体硬化、再结晶和热循环,并根据模型阐明的基本物理机制提供了合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1