Evaluation of a Diabetes Screening Clinical Decision Support Tool

Eva Tseng MD, MPH , Ariella Stein MPH , Nae-Yuh Wang PhD , Nestoras N. Mathioudakis MD, MHS , Hsin-Chieh Yeh PhD , Nisa M. Maruthur MD, MHS
{"title":"Evaluation of a Diabetes Screening Clinical Decision Support Tool","authors":"Eva Tseng MD, MPH ,&nbsp;Ariella Stein MPH ,&nbsp;Nae-Yuh Wang PhD ,&nbsp;Nestoras N. Mathioudakis MD, MHS ,&nbsp;Hsin-Chieh Yeh PhD ,&nbsp;Nisa M. Maruthur MD, MHS","doi":"10.1016/j.focus.2024.100287","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>The authors evaluated whether an electronic health record clinical decision support system improves diabetes screening across a health system.</div></div><div><h3>Methods</h3><div>Study population included adults without diabetes attending a visit at 27 primary care clinics. Outcomes included the monthly screening laboratory order rate and completion rate among eligible patient visits. The authors performed logistic regression using a generalized estimating equations model and interrupted time series analysis to evaluate the change in the outcome from baseline to implementation and postimplementation periods.</div></div><div><h3>Results</h3><div>From the baseline to postimplementation period, screening laboratory order rates increased from 53% to 66%, and completion rates increased from 46% to 54%, respectively. The odds of laboratory order and completion increased significantly from the baseline to postimplementation period (test order: OR=3.7; 95% CI=3.4, 4.1, <em>p</em>&lt;0.001; test completion: OR=2.1; 95% CI=2.0, 2.3, <em>p</em>&lt;0.001). In the interrupted time series analysis, laboratory order and completion rates increased significantly from the baseline period (<em>p</em>&lt;0.001 for both).</div></div><div><h3>Conclusions</h3><div>The authors developed and implemented a clinical decision support system alert that automatically identifies eligible patients and facilitates single-click ordering of a diabetes screening test. An easily implementable and scalable clinical decision support system alert can improve diabetes screening.</div></div>","PeriodicalId":72142,"journal":{"name":"AJPM focus","volume":"3 6","pages":"Article 100287"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJPM focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773065424001056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

The authors evaluated whether an electronic health record clinical decision support system improves diabetes screening across a health system.

Methods

Study population included adults without diabetes attending a visit at 27 primary care clinics. Outcomes included the monthly screening laboratory order rate and completion rate among eligible patient visits. The authors performed logistic regression using a generalized estimating equations model and interrupted time series analysis to evaluate the change in the outcome from baseline to implementation and postimplementation periods.

Results

From the baseline to postimplementation period, screening laboratory order rates increased from 53% to 66%, and completion rates increased from 46% to 54%, respectively. The odds of laboratory order and completion increased significantly from the baseline to postimplementation period (test order: OR=3.7; 95% CI=3.4, 4.1, p<0.001; test completion: OR=2.1; 95% CI=2.0, 2.3, p<0.001). In the interrupted time series analysis, laboratory order and completion rates increased significantly from the baseline period (p<0.001 for both).

Conclusions

The authors developed and implemented a clinical decision support system alert that automatically identifies eligible patients and facilitates single-click ordering of a diabetes screening test. An easily implementable and scalable clinical decision support system alert can improve diabetes screening.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病筛查临床决策支持工具的评估
导言作者评估了电子健康记录临床决策支持系统是否能改善整个医疗系统的糖尿病筛查。方法研究对象包括在 27 家初级保健诊所就诊的无糖尿病成人。研究结果包括每月筛查实验室订单率和合格患者就诊完成率。作者使用广义估计方程模型和间断时间序列分析进行了逻辑回归,以评估从基线到实施期间和实施后结果的变化。结果从基线到实施后,筛查化验单率分别从 53% 增加到 66%,完成率从 46% 增加到 54%。从基线期到实施后,下达化验单和完成化验单的几率都有显著增加(化验单:OR=3.7;95% 置信度:0.9):OR=3.7;95% CI=3.4,4.1,p<0.001;检验完成:OR=2.1;95% CI=2.0,2.3,p<0.001)。在间断时间序列分析中,化验单和化验完成率较基线期均有显著提高(均为 p<0.001)。结论作者开发并实施了一种临床决策支持系统警报,该系统可自动识别符合条件的患者,并为糖尿病筛查化验的单击下单提供便利。易于实施和扩展的临床决策支持系统警报可以改善糖尿病筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AJPM focus
AJPM focus Health, Public Health and Health Policy
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
An Estimate of Preventable Harms Associated With Screening Colonoscopy Overuse in the U.S. Food-Away-From-Home Options in Local Military Nutrition Environments Prevalence of Gun Carrying and Gun Violence Victimization and Perpetration Among a Nationally Representative Sample of U.S. Youth and Young Adults The Association Between a Summary Measure of Social Determinants of Health/Health Equity and Cardiovascular Disease Burden Among Mississippi Adults Determining Filipinos’ Preferences for Colorectal Cancer Screening Tests: Insights From a Choice-Based Conjoint Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1