Deep learning meets bibliometrics: A survey of citation function classification

IF 3.4 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Informetrics Pub Date : 2024-11-14 DOI:10.1016/j.joi.2024.101608
Yang Zhang , Yufei Wang , Quan Z. Sheng , Lina Yao , Haihua Chen , Kai Wang , Adnan Mahmood , Wei Emma Zhang , Munazza Zaib , Subhash Sagar , Rongying Zhao
{"title":"Deep learning meets bibliometrics: A survey of citation function classification","authors":"Yang Zhang ,&nbsp;Yufei Wang ,&nbsp;Quan Z. Sheng ,&nbsp;Lina Yao ,&nbsp;Haihua Chen ,&nbsp;Kai Wang ,&nbsp;Adnan Mahmood ,&nbsp;Wei Emma Zhang ,&nbsp;Munazza Zaib ,&nbsp;Subhash Sagar ,&nbsp;Rongying Zhao","doi":"10.1016/j.joi.2024.101608","DOIUrl":null,"url":null,"abstract":"<div><div>With the advent and progression of Natural Language Processing (NLP) methodologies, the domain of automatic citation function classification has gained popularity and considerable research efforts have been contributed to this task. Automatic citation function classification has a joint computational linguistic and bibliometrics background. However, due to the different expertise in both fields, there is rarely a comprehensive and unified analysis of this task. We provide a detailed and nuanced examination analysis of the evolution of citation function classification task from the dimensions of citation function annotation schemes, widely employed benchmarks, and computational models. We first present the origins and the development of the citation function classification task. From the perspective of multi-disciplinary integration, we then discuss how bibliometrics and NLP can be better combined to contribute to the citation function classification task. Finally, based on the deficiencies that we have found in the task, we suggest some promising prospects in both bibliometrics and NLP to be investigated.</div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"19 1","pages":"Article 101608"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724001202","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent and progression of Natural Language Processing (NLP) methodologies, the domain of automatic citation function classification has gained popularity and considerable research efforts have been contributed to this task. Automatic citation function classification has a joint computational linguistic and bibliometrics background. However, due to the different expertise in both fields, there is rarely a comprehensive and unified analysis of this task. We provide a detailed and nuanced examination analysis of the evolution of citation function classification task from the dimensions of citation function annotation schemes, widely employed benchmarks, and computational models. We first present the origins and the development of the citation function classification task. From the perspective of multi-disciplinary integration, we then discuss how bibliometrics and NLP can be better combined to contribute to the citation function classification task. Finally, based on the deficiencies that we have found in the task, we suggest some promising prospects in both bibliometrics and NLP to be investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习与文献计量学的结合:引文函数分类调查
随着自然语言处理(NLP)方法的出现和发展,引文功能自动分类领域已变得越来越受欢迎,并为此做出了巨大的研究努力。自动引文功能分类具有计算语言学和文献计量学的共同背景。然而,由于这两个领域的专业知识不同,很少有对这一任务的全面统一分析。我们从引文功能标注方案、广泛使用的基准和计算模型等维度对引文功能分类任务的演变进行了详细而细致的研究分析。我们首先介绍了引文功能分类任务的起源和发展。然后,我们从多学科融合的角度,讨论了如何更好地将文献计量学与 NLP 结合起来,为引文功能分类任务做出贡献。最后,基于我们在任务中发现的不足,我们提出了文献计量学和近义词语言学中一些有待研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
期刊最新文献
Acknowledging the new invisible colleague: Addressing the recognition of Open AI contributions in in scientific publishing Integrating persistence process into the analysis of technology convergence using STERGM Unveiling intrinsic interactions of science and technology in artificial intelligence using a network portrait divergence approach A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm Integration vs segregation: Network analysis of interdisciplinarity in funded and unfunded research on infectious diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1