Research on Video Sample Collection and Processing Methods Based on Artificial Intelligence Platform

An Hu , Qi Wang , Xiaoguang Xu , Yao Zhao , Qian Ji , Lei Pei
{"title":"Research on Video Sample Collection and Processing Methods Based on Artificial Intelligence Platform","authors":"An Hu ,&nbsp;Qi Wang ,&nbsp;Xiaoguang Xu ,&nbsp;Yao Zhao ,&nbsp;Qian Ji ,&nbsp;Lei Pei","doi":"10.1016/j.procs.2024.10.073","DOIUrl":null,"url":null,"abstract":"<div><div>This paper summarizes the video sample collection and processing methods based on artificial intelligence platform, focusing on video noise cancellation, content segmentation and classification, and feature extraction and representation techniques. The paper believes that the deep learning technology, especially the convolutional neural network, shows great potential in image recognition and video analysis, and effectively improves the level of automation and accuracy of video processing. This paper discusses the importance of building a large-scale and high-quality video sample library, and how to improve the processing efficiency and accuracy of video data through intelligent technology.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"247 ","pages":"Pages 609-616"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924028734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper summarizes the video sample collection and processing methods based on artificial intelligence platform, focusing on video noise cancellation, content segmentation and classification, and feature extraction and representation techniques. The paper believes that the deep learning technology, especially the convolutional neural network, shows great potential in image recognition and video analysis, and effectively improves the level of automation and accuracy of video processing. This paper discusses the importance of building a large-scale and high-quality video sample library, and how to improve the processing efficiency and accuracy of video data through intelligent technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能平台的视频样本采集与处理方法研究
本文总结了基于人工智能平台的视频样本采集与处理方法,重点介绍了视频噪声消除、内容分割与分类、特征提取与表示技术。本文认为,深度学习技术,尤其是卷积神经网络,在图像识别和视频分析中展现出巨大潜力,有效提高了视频处理的自动化水平和准确性。本文探讨了建立大规模、高质量视频样本库的重要性,以及如何通过智能技术提高视频数据的处理效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1