{"title":"Conversion of monoculture plantation to two-aged mixed plantation enhances soil organic carbon via increased microbial residue carbon accrual","authors":"Xiangrong Cheng , Yulin Zhang , Haidong Xu","doi":"10.1016/j.catena.2024.108555","DOIUrl":null,"url":null,"abstract":"<div><div>Mixed plantations are more effective at storing soil organic carbon (SOC) than monoculture plantations. However, the accrual and stabilization of SOC are contingent upon its composition and source. Further, research on the impact of converting monoculture plantations to mixed plantations on SOC fractions and sources remains limited. We aimed to investigate the variations in SOC fractions (mineral-associated organic C [MAOC]; particulate organic C [POC]) and sources (lignin phenols and amino sugars as biomarkers), and associated biotic and abiotic factors in a monoculture coniferous plantation (used as a control) and three two-aged mixed plantations (4-, 7-, and 11-year-old stands of broad-leaved tree species planted in monoculture coniferous plantations). The conversion from monoculture to two-aged mixed plantations resulted in a greater accumulation of POC than MAOC, as well as higher accumulation rates of amino sugars (representing microbial residue) than lignin phenols (representing plant residues). The influence of soil microbial traits on the accumulation of lignin phenols and amino sugars was more pronounced than that of plant traits (root biomass) and soil nutrients (N and P availability). The presence of greater quantities of plant material inputs has been observed to stimulate microbial activity (e.g., β-1,4-glucosidase) and growth (e.g., saprotrophic fungi), which has been shown to increase microbial biomass and residue production and enhance recalcitrant lignin accumulation. Furthermore, the contribution of microbial-derived carbon to SOC in the mixed plantation (46 %) greatly increased compared with that in the monoculture plantation (28 %). These results demonstrate that the conversion of monoculture to two-aged mixed plantations greatly affects the composition and sources of SOC, leading to enhance accumulation and stabilization of SOC. To conclude, two-aged mixed plantations may serve as an effective silvicultural model for the promotion of SOC sequestration in forest ecosystems.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"247 ","pages":"Article 108555"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224007525","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed plantations are more effective at storing soil organic carbon (SOC) than monoculture plantations. However, the accrual and stabilization of SOC are contingent upon its composition and source. Further, research on the impact of converting monoculture plantations to mixed plantations on SOC fractions and sources remains limited. We aimed to investigate the variations in SOC fractions (mineral-associated organic C [MAOC]; particulate organic C [POC]) and sources (lignin phenols and amino sugars as biomarkers), and associated biotic and abiotic factors in a monoculture coniferous plantation (used as a control) and three two-aged mixed plantations (4-, 7-, and 11-year-old stands of broad-leaved tree species planted in monoculture coniferous plantations). The conversion from monoculture to two-aged mixed plantations resulted in a greater accumulation of POC than MAOC, as well as higher accumulation rates of amino sugars (representing microbial residue) than lignin phenols (representing plant residues). The influence of soil microbial traits on the accumulation of lignin phenols and amino sugars was more pronounced than that of plant traits (root biomass) and soil nutrients (N and P availability). The presence of greater quantities of plant material inputs has been observed to stimulate microbial activity (e.g., β-1,4-glucosidase) and growth (e.g., saprotrophic fungi), which has been shown to increase microbial biomass and residue production and enhance recalcitrant lignin accumulation. Furthermore, the contribution of microbial-derived carbon to SOC in the mixed plantation (46 %) greatly increased compared with that in the monoculture plantation (28 %). These results demonstrate that the conversion of monoculture to two-aged mixed plantations greatly affects the composition and sources of SOC, leading to enhance accumulation and stabilization of SOC. To conclude, two-aged mixed plantations may serve as an effective silvicultural model for the promotion of SOC sequestration in forest ecosystems.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.