Sona Alyounis , Delal E. Al Momani , Fahim Abdul Gafoor , Zaineb AlAnsari , Hamed Al Hashemi , Maryam R. AlShehhi
{"title":"Unveiling soil coherence patterns along Etihad Rail using Sentinel-1 and Sentinel-2 data and machine learning in arid region","authors":"Sona Alyounis , Delal E. Al Momani , Fahim Abdul Gafoor , Zaineb AlAnsari , Hamed Al Hashemi , Maryam R. AlShehhi","doi":"10.1016/j.rsase.2024.101374","DOIUrl":null,"url":null,"abstract":"<div><div>This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and under-construction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101374"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and under-construction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems