Analysis of radiative heat flux using ASTER thermal images: Climatological and volcanological factors on Java Island, Indonesia

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Applications-Society and Environment Pub Date : 2024-11-01 DOI:10.1016/j.rsase.2024.101376
Dini Andriani , Supriyadi , Muhammad Aufaristama , Asep Saepuloh , Alamta Singarimbun , Wahyu Srigutomo
{"title":"Analysis of radiative heat flux using ASTER thermal images: Climatological and volcanological factors on Java Island, Indonesia","authors":"Dini Andriani ,&nbsp;Supriyadi ,&nbsp;Muhammad Aufaristama ,&nbsp;Asep Saepuloh ,&nbsp;Alamta Singarimbun ,&nbsp;Wahyu Srigutomo","doi":"10.1016/j.rsase.2024.101376","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on analysing natural Radiative Heat Flux (RHF) anomalies to map out the heat distribution across the Java Island. Leveraging remote sensing techniques, we calculated natural RHF anomalies using Land Surface Temperature (LST) and Land Surface Emissivity (LSE) data obtained from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. A key aspect of our approach was distinguishing between natural and anthropogenic heat sources by cross-referencing the LST Map with the Land Use Land Cover (LULC) map of Java Island. The study interprets natural RHF anomalies by examining regional trends in non-volcanic areas and local trends within volcanic regions, considering climatological and volcanological factors. Relation with climatological factors involves assessing soil moisture parameters from Soil Moisture Active Passive (SMAP) data, precipitation from monthly Global Precipitation Measurement (GPM) data, and classifications according to the Köppen-Geiger climate schema. Our regional analysis reveals high natural RHF anomalies in the northern regions of West Java, parts of Central Java, and most of East Java, attributed to low soil moisture and low precipitation in savanna and monsoon climates. On a more localised scale, RHF values are significantly high in volcanic areas, particularly around Central and East Java's volcanoes, such as Mt. Merapi, Mt. Slamet, Mt. Semeru, the Sidoarjo Mud Volcano, and Mt. Ijen. The Natural RHF anomalies at volcanoes in West Java were identified as not being high except at Mt Patuha. These areas exhibit average natural RHF anomalies ranging between 32.22 W/m<sup>2</sup> and 115.13 W/m<sup>2</sup>, indicating strong and intense volcanic activity. The insights obtained from these findings explain the overall thermal characteristics of Java Island and highlight the presence of subsurface thermal zones associated with volcanic activity and geothermal potential.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101376"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on analysing natural Radiative Heat Flux (RHF) anomalies to map out the heat distribution across the Java Island. Leveraging remote sensing techniques, we calculated natural RHF anomalies using Land Surface Temperature (LST) and Land Surface Emissivity (LSE) data obtained from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. A key aspect of our approach was distinguishing between natural and anthropogenic heat sources by cross-referencing the LST Map with the Land Use Land Cover (LULC) map of Java Island. The study interprets natural RHF anomalies by examining regional trends in non-volcanic areas and local trends within volcanic regions, considering climatological and volcanological factors. Relation with climatological factors involves assessing soil moisture parameters from Soil Moisture Active Passive (SMAP) data, precipitation from monthly Global Precipitation Measurement (GPM) data, and classifications according to the Köppen-Geiger climate schema. Our regional analysis reveals high natural RHF anomalies in the northern regions of West Java, parts of Central Java, and most of East Java, attributed to low soil moisture and low precipitation in savanna and monsoon climates. On a more localised scale, RHF values are significantly high in volcanic areas, particularly around Central and East Java's volcanoes, such as Mt. Merapi, Mt. Slamet, Mt. Semeru, the Sidoarjo Mud Volcano, and Mt. Ijen. The Natural RHF anomalies at volcanoes in West Java were identified as not being high except at Mt Patuha. These areas exhibit average natural RHF anomalies ranging between 32.22 W/m2 and 115.13 W/m2, indicating strong and intense volcanic activity. The insights obtained from these findings explain the overall thermal characteristics of Java Island and highlight the presence of subsurface thermal zones associated with volcanic activity and geothermal potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ASTER 热图像分析辐射热通量:印度尼西亚爪哇岛的气候和火山因素
本研究的重点是分析自然辐射热通量(RHF)异常,以绘制爪哇岛的热量分布图。利用遥感技术,我们使用从高级星载热发射和反射辐射计(ASTER)图像中获得的陆地表面温度(LST)和陆地表面发射率(LSE)数据计算了自然辐射热通量异常。我们的方法的一个关键方面是通过将 LST 地图与爪哇岛的土地利用土地覆盖(LULC)地图相互参照,区分自然热源和人为热源。该研究通过考察非火山地区的区域趋势和火山地区的局部趋势,并考虑气候和火山因素,解释了自然 RHF 异常。与气候因素的关系包括评估土壤水分主动被动数据(SMAP)中的土壤水分参数、全球降水量月度测量数据(GPM)中的降水量,以及根据柯本-盖革气候模式进行的分类。我们的区域分析显示,西爪哇北部地区、中爪哇部分地区和东爪哇大部分地区的自然 RHF 异常值较高,这归因于热带稀树草原和季风气候的低土壤湿度和低降水量。在更局部的范围内,火山地区的 RHF 值明显偏高,尤其是在中爪哇和东爪哇的火山周围,如默拉皮火山、斯拉梅特火山、塞默鲁火山、锡多阿茹泥火山和伊真火山。除帕图哈火山外,西爪哇火山的自然 RHF 异常值并不高。这些地区的平均自然 RHF 异常值介于 32.22 W/m2 和 115.13 W/m2 之间,表明火山活动强烈。这些发现解释了爪哇岛的总体热特征,并突出了与火山活动和地热潜力相关的地下热区的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
期刊最新文献
Mapping coastal wetland changes from 1985 to 2022 in the US Atlantic and Gulf Coasts using Landsat time series and national wetland inventories Assessment of Dry Microburst Index over India derived from INSAT-3DR satellite Unveiling soil coherence patterns along Etihad Rail using Sentinel-1 and Sentinel-2 data and machine learning in arid region Analysis of radiative heat flux using ASTER thermal images: Climatological and volcanological factors on Java Island, Indonesia Hybrid Naïve Bayes Gaussian mixture models and SAR polarimetry based automatic flooded vegetation studies using PALSAR-2 data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1