Weimin Yuan , Yuanyuan Wang , Ruirui Fan , Yuxuan Zhang , Guangmei Wei , Cai Meng , Xiangzhi Bai
{"title":"Simultaneous image denoising and completion through convolutional sparse representation and nonlocal self-similarity","authors":"Weimin Yuan , Yuanyuan Wang , Ruirui Fan , Yuxuan Zhang , Guangmei Wei , Cai Meng , Xiangzhi Bai","doi":"10.1016/j.cviu.2024.104216","DOIUrl":null,"url":null,"abstract":"<div><div>Low rank matrix approximation (LRMA) has been widely studied due to its capability of approximating original image from the degraded image. According to the characteristics of degraded images, image denoising and image completion have become research objects. Existing methods are usually designed for a single task. In this paper, focusing on the task of simultaneous image denoising and completion, we propose a weighted low rank sparse representation model and the corresponding efficient algorithm based on LRMA. The proposed method integrates convolutional analysis sparse representation (ASR) and nonlocal statistical modeling to maintain local smoothness and nonlocal self-similarity (NLSM) of natural images. More importantly, we explore the alternating direction method of multipliers (ADMM) to solve the above inverse problem efficiently due to the complexity of simultaneous image denoising and completion. We conduct experiments on image completion for partial random samples and mask removal with different noise levels. Extensive experiments on four datasets, i.e., Set12, Kodak, McMaster, and CBSD68, show that the proposed method prevents the transmission of noise while completing images and has achieved better quantitative results and human visual quality compared to 17 methods. The proposed method achieves (1.9%, 1.8%, 4.2%, and 3.7%) gains in average PSNR and (4.2%, 2.9%, 6.7%, and 6.6%) gains in average SSIM over the sub-optimal method across the four datasets, respectively. We also demonstrate that our method can handle the challenging scenarios well. Source code is available at <span><span>https://github.com/weimin581/demo_CSRNS</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104216"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002972","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Low rank matrix approximation (LRMA) has been widely studied due to its capability of approximating original image from the degraded image. According to the characteristics of degraded images, image denoising and image completion have become research objects. Existing methods are usually designed for a single task. In this paper, focusing on the task of simultaneous image denoising and completion, we propose a weighted low rank sparse representation model and the corresponding efficient algorithm based on LRMA. The proposed method integrates convolutional analysis sparse representation (ASR) and nonlocal statistical modeling to maintain local smoothness and nonlocal self-similarity (NLSM) of natural images. More importantly, we explore the alternating direction method of multipliers (ADMM) to solve the above inverse problem efficiently due to the complexity of simultaneous image denoising and completion. We conduct experiments on image completion for partial random samples and mask removal with different noise levels. Extensive experiments on four datasets, i.e., Set12, Kodak, McMaster, and CBSD68, show that the proposed method prevents the transmission of noise while completing images and has achieved better quantitative results and human visual quality compared to 17 methods. The proposed method achieves (1.9%, 1.8%, 4.2%, and 3.7%) gains in average PSNR and (4.2%, 2.9%, 6.7%, and 6.6%) gains in average SSIM over the sub-optimal method across the four datasets, respectively. We also demonstrate that our method can handle the challenging scenarios well. Source code is available at https://github.com/weimin581/demo_CSRNS.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems